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commutativity parameter. We establish relations between parameters in the BLG model

and those in M-theory. This shows that the model describes an M5-brane in a large C-field

background.
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1. Introduction

Recently, a model of the M5-brane world-volume field theory was constructed [1] as a system

of infinitely many M2-branes. The theory of Bagger, Lambert [2] and Gustavsson [3]

was used to describe the multiple M2-brane system. In the BLG model, a background

configuration of the M2-brane system corresponds to the choice of a Lie 3-algebra [4], and

the Lie 3-algebra used for the M5-brane is the Nambu-Poisson algebra [5] on a 3-manifold

N which appears as the internal space from the M2-branes’ point of view, but it constitutes

the M5-brane world-volume together with the M2-brane world-volume.

It was shown [1] that at the quadratic order of the Lagrangian, the M5-brane the-

ory contains a self-dual two-form gauge field, in addition to the scalars corresponding to

fluctuations of the M5-brane in the transverse directions, as well as their fermionic super-

partners. To the order that was computed, this M5-brane is different from, but compatible

with previous formulations of the M5-brane theory [6, 7]. In [1] , higher order terms of

the Lagrangian were not considered, and a truncation was applied as a short-cut to show
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the desired properties of the M5-brane model. In this paper, we show that actually the

“truncation” did not really remove any physical degrees of freedom. The only physical

components of the gauge field are exactly those surviving the truncation.

By the inclusion of the nonlinear terms, the geometrical structure of the system be-

comes transparent. We show that the gauge transformation defined by the Lie 3-algebra

can be identified as the diffeomorphism of N which preserve its volume 3-form. The gauge

potential associated with this symmetry can be identified with two-form gauge field bµν̇ (an

index µ for the world-volume and another ν̇ for the internal space N ) which is a particu-

lar combination of the Bagger-Lambert gauge field Aµab. We show that only a particular

combination of Aµab is relevant to define the gauge symmetry, the action and the super-

symmetry. We note that the internal space N may be regarded as the fiber on the three

dimensional membrane world-volume M in a sense.

The second characteristic feature of the system is that not only the covariant derivative

defined by the gauge potential bµν̇ is covariant, the triplet commutator {X µ̇,X ν̇ ,Φ} is also

covariant. This follows from the fundamental identity of the Nambu-Poisson structure.

From this combination, we obtain the second two-form field bµ̇ν̇ by which we can define

the covariant derivative in the fiber direction N . By combining two covariant derivatives,

one obtains various six dimensional field strengths associated with bµν̇ , bµ̇ν̇ .

The BLG action and the equations of motion are rewritten in terms of these fields.

The equations of motion for the tensor field are written in a manifestly gauge-covariant

form and combined with the Bianchi identity into a self-dual form.

We organize the paper as follows. In section 4, we derive the BLG gauge symmetry

associated with the Nambu-Poisson bracket and identify the gauge fields bµν̇ , bµ̇ν̇ from the

gauge field Aµab and the scalar field X µ̇. In particular we identify the gauge transformation

as the volume-preserving diffeomorphism of N . In section 5 we derive two types of covariant

derivatives from two-form gauge fields and the corresponding field strengths. The BLG

action is then rewritten in terms of these fields and we derive the equation of motion. As

mentioned, it is identical to the equation for self-dual field strength with the source terms

associated with other fields. In section 6, we derive the supersymmetry transformation of

the six dimensional fields.

In [8], the connection with M5 brane was used to provide the geometrical origin of extra

generators in the construction of Lie 3-algebra which contains arbitrary Lie algebra. In sec-

tion 7 we provide a detailed explanation of the derivation of D4 action from BLG model by

the double dimensional reduction. Here the volume-preserving diffeomorphism is replaced

by the area-preserving diffeomorphism. By comparing the obtained D4-brane action to the

known result, we find explicit relations between parameters in the BLG model and those

in M-theory (the Planck scale and the magnitude of the background C-field.) This clearly

indicates that the BLG model well describes an M5-brane in a large C-field background.

In section 9, we give a few conjectural arguments which may be helpful to understand

the geometrical nature of M5 brane in the future. First, in section 9 we point out that the

M5-brane theory we obtained may be interpreted as a dynamical theory for the Nambu-

Poisson structure. In this sense it is analogous to the Kodaira-Spencer theory [9] for the

complex structure of a Calabi-Yau manifold.
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The last section is devoted to additional remarks and speculations.

For other recent developments of the BLG model, see [10].

2. Review of BLG model

Lie 3-algebra. The novelty of the BLG model is that it integrates a novel symmetry

defined by Lie 3-algebra with supersymmetry. The Lie 3-algebra is defined by an antisym-

metric trilinear product, called Nambu bracket, which will be represented by the bracket

{∗, ∗, ∗}. We denote the basis of the algebra be T a. The consistency condition of Lie

3-algebra is that it must satisfy the so-called fundamental identity:

{T a, T b, {T c, T d, T e}} = {{T a, T b, T c}, T d, T e}
+{T c, {T a, T b, T d}, T e} + {T c, T d, {T a, T b, T e}}. (2.1)

It is often convenient to define the structure constant fabc
d by

{T a, T b, T c} = fabc
dT

d. (2.2)

For the construction of an action we need an invariant metric

hab = 〈T a, T b〉 (2.3)

which satisfies,

〈{T a, T b, T c}, T d〉 + 〈T c, {T a, T b, T d}〉 = 0 . (2.4)

With the Lie 3-algebra, various fields in BLG model which are symbolically written as

φ =
∑

a φaT
a transform infinitesimally as

δΛφ =
∑

a,b

Λab{T a, T b, φ}, or δΛφa = Λcdf
cdb

aφb (2.5)

for the gauge parameter Λab. The fundamental identity implies that this transformation

closes in the following sense,

[δΛ1
, δΛ2

]φ = δ[Λ1,Λ2]φ, [Λ1,Λ2]ab := Λ1deΛ2cbf
dec

a + Λ1deΛ2acf
dec

b . (2.6)

As a result of (2.4), the metric (2.3) must also be invariant under the symmetry (2.5),

〈δΛφ1, φ2〉 + 〈φ1, δΛφ2〉 = 0 . (2.7)

The BLG model, whose action is constructed with the structure constant and the invariant

metric, is a gauge theory associated with this symmetry.
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Bagger-Lambert action. With our notation, the action of the BLG model is given by

S = SX + SΨ + SCS + Sint + Spot, (2.8)

where

SX = −1

2

∫

M

d3x〈DµX
I ,DµXI〉, (2.9)

Spot = − 1

12

∫

M

d3x〈{XI ,XJ ,XK}, {XI ,XJ ,XK}〉, (2.10)

SCS =

∫

M

d3xǫµνλ

(
1

2
fabcdAµab∂νAλcd +

1

3
f cda

gf
efgbAµabAνcdAλef

)
, (2.11)

SΨ =
i

2

∫

M

d3x〈Ψ,ΓµDµΨ〉, (2.12)

Sint =
i

4

∫

M

d3x〈Ψ,ΓIJ{XI ,XJ ,Ψ}〉, (2.13)

where the covariant derivatives are

DµX
I
a = ∂µX

I
a − f bcd

aAµbcX
I
d , DµΨa = ∂µΨI

a − f bcd
aAµbcΨd. (2.14)

We denote the world-volume of the membrane as M and its coordinate as xµ (µ = 0, 1, 2).

The supersymmetry transformation parameter ǫ and the fermion Ψ belong to 8s and 8c rep-

resentations, respectively, of the SO(8) R-symmetry, and are represented as 32 component

spinors satisfying

Γµνρǫ = +ǫµνρǫ, Γµνρψ = −ǫµνρψ. (2.15)

This Lagrangian has a gauge symmetry associated with the 3-algebra,

δΛX
I
a = f bcd

aΛbcX
I
d , δΛΨa = f bcd

aΛbcΨd, δΛAµab = DµΛab, (2.16)

where

DµΛab = ∂µΛab − f cde
aAµcdΛeb + f cde

bAµcdΛea. (2.17)

The Bagger-Lambert action has the maximal (N = 8) SUSY in d = 3,

δXI = iǭΓIΨ, (2.18)

δΨ = DµX
IΓµΓIǫ− 1

6

{
XI ,XJ ,XK

}
ΓIJKǫ, (2.19)

δÃµ
b
a = iǭΓµΓIX

I
c Ψdf

cdb
a, Ãµ

b
a := f cdb

aAµcd. (2.20)

3. Nambu-Poisson bracket and promotion of 3d fields to 6d

Nambu-Poisson bracket as Lie 3-algebra. For the construction of M5-brane, we

introduce an “internal” three-manifold N and use the Nambu-Poisson bracket

{f, g, h}NP =
∑

µ̇ν̇λ̇

P µ̇ν̇λ̇(y)∂µ̇f∂ν̇g∂λ̇
h (3.1)
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on N as a realization of three-algebra. Here yµ̇ (µ̇ = 1̇, 2̇, 3̇) is the local coordinate on

N . For literatures on the Nambu-Poisson bracket, see for example [11, 12]. One of the

most important properties of the Nambu-Poisson bracket is that it satisfy the analog of

the fundamental identity for arbitrary functions fi (i = 1, . . . , 5) on N ,

{f1, f2, {f3, f4, f5}NP}NP= {{f1, f2, f3}NP, f4, f5}NP

+{f3, {f1, f2, f4}NP, f5}NP+{f3, f4, {f1, f2, f3}NP}NP. (3.2)

This gives a very severe constraint on the coefficient P µ̇ν̇λ̇(y). Actually it is known that

by the suitable choice of the local coordinates, it can be reduced to the Jacobian,

{f, g, h}NP = ǫµ̇ν̇ρ̇ ∂f

∂yµ̇

∂g

∂yν̇

∂h

∂yρ̇
. (3.3)

This property is referred to as the “decomposability” in the literature [12]. By using

this fact, we can use (3.3) in the following without losing generality. We also note that

the dimension of the internal manifold N is essentially restricted to 3 because of the

decomposability. If we choose the basis of functions on N as χa(y) (a = 1, 2, 3, . . .) and

write the Nambu-Poisson bracket as a Lie 3-algebra,

{χa, χb, χc}NP =
∑

d

fabc
dχ

d , (3.4)

eq. (3.2) implies that the structure constant fabc
d here satisfies the fundamental identity.

The integration over the y-space can be used to define the invariant metric,

〈f, g〉 =
1

g2

∫

N

d3yf(y)g(y). (3.5)

It is obvious that this satisfies (2.4). We define

hab = 〈χa, χb〉, hab = (h−1)ab . (3.6)

Because we have already fixed the scale of yµ̇ at (3.3), we cannot in general remove the

coefficient g from the metric (3.6). As we will show later, however, if the internal space

is N = R3, it is possible to set this coupling at an arbitrary value by an appropreate

re-scaling of variables.

Except for the trivial case (N = R3), we have to cover N by local patches and the

coordinates yµ̇ are the local coordinates on each patch. If we need to go to the different

patch where the local coordinates are y′, the coordinate transformation between y and y′

(say y′µ̇ = f µ̇(y)) should keep the Nambu-Poisson bracket (3.3). It implies that

{f 1̇, f 2̇, f 3̇} = 1 . (3.7)

Namely f µ̇(y) should be the volume-preserving diffeomorphism. As we will see, the gauge

symmetry of the BLG model for this choice of Lie 3-algebra is the volume-preserving

diffeomorphism of N which is very natural in this set-up.

We note that we do not need the metric in yµ̇ space. For the definition of the theory

we only need to specify a volume form in N . The gauge symmetry associated with the

volume-preserving diffeomorphism is kept not by the metric but the various components of

the self-dual two-form field which comes out from Aµab and X µ̇ (longitudinal components

of X) as we will see.
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Definition of 6 dim fields. By combining the basis of C(N ), we can treat XI
a(x) and

Ψa(x) as six-dimensional local fields

XI(x, y) =
∑

a

XI
a(x)χa(y), Ψ(x, y) =

∑

a

Ψa(x)χ
a(y). (3.8)

Similarly, the gauge field Aab
λ can be regarded as a bi-local field:

Aλ(x, y, y′) = Aab
λ (x)χa(y)χb(y′). (3.9)

The existence of such a bi-local field does not mean the theory is non-local. Let us expand

it with respect to ∆yµ̇ ≡ y′µ̇ − yµ̇ as

Aλ(x, y, y′) = aλ(x, y) + bλµ̇(x, y)∆yµ̇ +
1

2
cλµ̇ν̇(x, y)∆y

µ̇∆yν̇ + · · · . (3.10)

Because Aλab always appears in the action in the form f bcd
aAλbc, the field Aλ(y, y′) is

highly redundant, and only the component

bλµ̇(x, y) =
∂

∂y′µ̇
Aλ(x, y, y′)

∣∣∣∣
y′=y

(3.11)

contributes to the action.1 For example, the covariant derivative (2.14) of BLG model is

rewritten for our case as,

DλX
I(x, y) ≡ (∂λX

Ia(x) − gf bcd
aAλbcX

I
d (x))χa(y)

= ∂λX
I(x, y) − gǫµ̇ν̇ρ̇ ∂

2Aλ(x, y, y′)

∂yµ̇∂y′ν̇

∣∣∣∣
y=y′

∂XI(x, y)

∂yρ̇

= ∂λX
I(x, y) − gǫµ̇ν̇ρ̇(∂µ̇bλν̇(x, y))(∂ρ̇X

I(x, y))

= ∂λX
I − g{bλν̇ , y

ν̇ ,XI}. (3.12)

The covariant derivative for the fermion field is similarly,

DλΨ(x, y) = ∂λΨ(x, y) − gǫµ̇ν̇ρ̇(∂µ̇bλν̇(x, y))(∂ρ̇Ψ(x, y)) = ∂λΨ − g{bλν̇ , y
ν̇ ,Ψ} . (3.13)

Longitudinal fields. In [1], this theory written in terms of fields on six dimensions is

identified with the theory describing a single M5-brane. At this point, only the xµ part of

the metric gµν = ηµν is defined, and we still have SO(8) global symmetry, which is different

from the SO(5) symmetry expected in the M5-brane theory.

This is quite similar to the situation in which we consider the D-brane Born-Infeld

action. The Born-Infeld Dp-brane action of ten-dimensional superstring theory possesses

SO(1, 9) Lorentz symmetry regardress of the world-volume dimension p+1. The rotational

symmetry is reduced to SO(9−p) for the transverse directions only after fixing the general

coordinate transformation symmetry on the world-volume with the static gauge condition2

Xµ(σ) = σµ. (3.14)

1In [1] it was treated as a trick (or an approximation by neglecting the irrelevant parts) to derive M5

action. However, it turned out that this is actually the exact statement.
2Turning on a background field such as the B-field will of course also break the global symmetry. For

the discussion here we are treating the background fields as covariant dynamical fields.
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This gauge fixing breaks the global symmetry from SO(1, 9) to SO(9− p), and at the same

time the world-volume metric is induced from the target space metric through (3.14).

We can interpret the six-dimensional theory we are considering here as a theory ob-

tained from an SO(1, 10) symmetric covariant theory by taking a partial static gauge for

three among six world-volume coordinates. As we mentioned above, however, we do not

have full diffeomorphism in the yµ̇ space. The action is invariant only under volume-

preserving diffeomorphism. This implies that we cannot completely fix the fields X µ̇, and

there are remaining physical degrees of freedom. For this reason, we should loosen the

static gauge condition as [1]

X µ̇(x, y) = yµ̇ + bµ̇(x, y), bµ̇ν̇ = ǫµ̇ν̇ρ̇b
ρ̇. (3.15)

As was shown in [1], the tensor field bµ̇ν̇ is identified with a part of the 2-form gauge field

on a M5-brane.

Comments on the coupling constant. In the case of ordinary Yang-Mills theories,

there are two widely-used conventions for coupling constants and normalization of gauge

fields. One way is to normalize a gauge field by the canonical kinetic term −(1/4)F 2
µν

and put the coupling constant in the covariant derivative D = d − igA. The other choice

is to define the covariant derivative D = d − iA without using the coupling constant and

instead put 1/g2 in front of the kinetic term of the gauge field. Similarly, there are different

conventions for coupling constant in the case of the BL theory, too. In the above, we put

the coupling constant g in the definition of the metric (3.6). This corresponds to the second

convention we mentioned above. We can move the coupling dependence from the overall

factor to the interaction terms by re-scaling the fields

XI → cXI , Ψ → cΨ, bµµ̇ → cbµµ̇, (3.16)

with c = g. In general, as ordinary Yang-Mills theories, we cannot remove the coupling

constant completely from the action.

If the internal space N is R3, however, we have an extra degree of freedom for re-

scaling, and it is in fact possible to the coupling constant from the action. Let us consider

the following re-scaling of variables.

XI → c′3XI , Ψ → c′3Ψ, bµµ̇ → c′4bµµ̇, yµ̇ → c′2yµ̇. (3.17)

This variable change is associated with an outer automorphism of the algebra, and does

not change the relative coefficients in the action. The only change in the action is the

overall factor. We can thus absorb the coupling constant by (3.17), and this implies that

the six-dimensional theory does not have any coupling constant.

We can adopt an elegant convention in which no coupling constant appears. However,

we adopt a different convention below. Because we interpret the six-dimensional theory as

a theory of an M5-brane, we would like to regard the scalar field XI as the coordinates

of the target space with mass dimension −1. We also give the meaning to the variables

yµ̇ as the world-volume coordinates, which also have mass dimension −1. We choose the

– 7 –
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parametrization in the yµ̇ space so that the linear part of the six-dimensional action is

invariant under Lorentz transformations in the (xµ, yµ̇) space. After fixing the scale of XI

and yµ̇ in this way, we can no longer use the two re-scalings (3.16) and (3.17) to change the

coupling constant and overall coefficient of the action. These two parameters have physical

meaning now.

In the following, in order to express the coupling constant dependence of each term in

the action clearly, we separate the coupling constant g from the structure constant. We

also introduce an overall coefficient T6, which is regarded as an effective tension of the M5-

brane. This plays an important role in the parameter matching in section 7, but we will

omit this factor in section 4, section 5, and section 6 for simplicity because it is irrelevant

to the analysis in these sections.

4. Gauge symmetry of M5 from Lie 3-algebra

Gauge transformation. The gauge transformations of the scalar fields XI and fermion

fields Ψ are given by

δΛX
I(x, y) = gΛab(x)f

abc
dX

I
c (x)χd(y)

= gΛab(x){χa, χb,XI} = g(δΛy
ρ̇)∂ρ̇X

I(x, y),

δΛΨ(x, y) = gΛab(x){χa, χb,Ψ} = g(δΛy
ρ̇)∂ρ̇Ψ(x, y), (4.1)

where we used

fabc
d = 〈{χa, χb, χc}, χd〉 ,

∑

a

χa(y)χa(y
′) = δ(3)(y − y′) . (4.2)

δΛy
µ̇ is defined as

δΛy
λ̇ = ǫλ̇µ̇ν̇∂µ̇Λν̇(x, y), (4.3)

Λµ̇(x, y) = ∂′µ̇Λ̃(x, y, y′)|y′=y , Λ̃(x, y, y′) := Λab(x)χ
a(y)χb(y′). (4.4)

We note that although the parameter of a gauge transformation may be expressed as a

bi-local function Λ̃(x, y, y′), the gauge transformation induced by it depends only on its

component Λµ̇(x, y) which is local in N . It comes from the fact that the gauge transfor-

mation by Λab is always defined through the combination fabc
dΛab .

The same argument can be applied to the gauge field Aµ(x, y, y′). As we already

mentioned, since it appears only through the combination Aµabf
abc

d, the local field b
µλ̇

(x, y)

defined as (3.11) shows up in the action.

The transformation (4.1) may be regarded as the infinitesimal reparametrization

y′λ̇ = yλ̇ − gδyλ̇. (4.5)

Since ∂µ̇δy
µ̇ = 0, it represents the volume-preserving diffeomorphism. Since the symmetry

is local on M, the gauge parameter is an arbitrary function of x. So what we have obtained

is a gauge theory on M whose gauge group is the volume-preserving diffeomorphism of N .

– 8 –
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In this sense, the world-volume of M5 brane may be regarded as the vector bundle N → M
but the gauge transformation on each fiber is not merely the linear transformation but the

diffeomorphism on the fiber which preserves the volume form

ω = dy1̇ ∧ dy2̇ ∧ dy3̇ . (4.6)

As we mentioned in the previous section, among eight scalar fields XI , the last five

components Xi are treated as scalar fields representing the transverse fluctuations of the

M5-brane. The other three X µ̇ (longitudinal field) are rewritten as as

X µ̇(y) =
yµ̇

g
+

1

2
ǫµ̇κ̇λ̇b

κ̇λ̇
(y). (4.7)

We chose the coefficients so that we obtain Lorentz invariant kinetic terms in the six-

dimensional action. The gauge transformation of bµ̇ν̇ can be derived from (4.1) and (4.7) as

δΛbκ̇λ̇
(y) = ∂κ̇Λ

λ̇
− ∂

λ̇
Λκ̇ + g(δΛy

ρ̇)∂ρ̇bκ̇λ̇
(y). (4.8)

The gauge transformation of the gauge field Aλ(x, y, y′) is given by δΛAλ(x, y, y′) =

DλΛ̃(x, y, y′). The covariant derivative of a bi-local field is defined by tensoring the covari-

ant derivative (3.12) for a local field, and we obtain

DλΛ(y, y′) = ∂λΛ(y, y′) − gǫµ̇ν̇ρ̇[∂µ̇bλν̇(y)∂ρ̇Λ(y, y′) + ∂′µ̇bλν̇(y
′)∂′ρ̇Λ(y, y′)]. (4.9)

From this we can extract the transformation law of the component field bλσ̇

δΛbλσ̇ = ∂′µ̇δΛAλ(y, y′)|y′=y = ∂λΛσ̇ − g∂σ̇ξΛ − gδgcbλσ̇, (4.10)

where δgcbλσ̇ is the coordinate transformation in y-space

δgcbλσ̇ = −δΛyτ̇∂τ̇ bλσ̇ − (∂σ̇δΛy
τ̇ )bλτ̇ , (4.11)

and ξΛ is defined by

ξΛ = ǫµ̇ν̇ρ̇(∂µ̇bλν̇Λρ̇ + bλµ̇∂ν̇Λρ̇). (4.12)

In addition to these gauge transformations derived from (2.14) and (2.17), there is an

additional gauge transformation which acts only on the field bλµ̇. As we can see in (3.12),

bλµ̇ appears in the covariant derivative in the form of the rotation in the yµ̇ space. This

means that DµΦ is invariant under

δbλµ̇ = −∂µ̇Λλ. (4.13)

We can easily check that the Chern-Simons term is also invariant under this transformation,

and thus (4.13) is also a gauge symmetry of the theory.

Now we summarize the gauge transformation of the six-dimensional theory.

δΛX
i = g(δΛy

ρ̇)∂ρ̇X
i, (4.14)

δΛΨ = g(δΛy
ρ̇)∂ρ̇Ψ, (4.15)

δΛbκ̇λ̇
= ∂κ̇Λ

λ̇
− ∂

λ̇
Λκ̇ + g(δΛy

ρ̇)∂ρ̇bκ̇λ̇
, (4.16)

δΛbλσ̇ = ∂λΛσ̇ − ∂σ̇Λλ − gδgcbλσ̇. (4.17)

We absorbed ξΛ in (4.10) into the definition of the parameter Λλ. In the weak coupling

limit g → 0, we obtain the standard gauge transformation on an M5-brane.
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Covariant derivatives in 6 dim. An intriguing feature of our six dimensional model

is that one may define the covariant derivative in the fiber direction.

By using the fundamental identity, it is easy to show that if Φ1, Φ2, and Φ3 are covariant

fields (such as XI or Ψ), not only DµΦ1 but {Φ1,Φ2,Φ3} are also covariant because of the

fundamental identity,

δΛ{Φ1,Φ2,Φ3} = {δΛΦ1,Φ2,Φ3} + {Φ1, δΛΦ2,Φ3} + {Φ1,Φ2, δΛΦ3} . (4.18)

It implies that the following combination defines the “covariant” derivative along the fiber

direction,

Dµ̇Φ ≡ g2

2
ǫµ̇ν̇ρ̇{X ν̇ ,X ρ̇,Φ}

= ∂µ̇Φ + g(∂
λ̇
bλ̇∂µ̇Φ − ∂µ̇b

λ̇∂
λ̇
Φ) +

g2

2
ǫµ̇ν̇ρ̇{bν̇ , bρ̇,Φ}. (4.19)

Together with (3.12), which we repeat here again,

DµΦ ≡ DµΦ = ∂µΦ − g{bµν̇ , y
ν̇ ,Φ}, (4.20)

we have a set of covariant derivatives on M5 world-volume.

These covariant derivatives possess the following important properties.

• Leibniz rule:

Dµ{Φ1,Φ2,Φ3} = {DµΦ1,Φ2,Φ3} + {Φ1,DµΦ2,Φ3} + {Φ1,Φ2,DµΦ3}. (4.21)

• Integration by parts:

∫
d3xd3yΦ1DµΦ2 = −

∫
d3xd3y(DµΦ1)Φ2. (4.22)

Here Dµ (µ = 0, 1, . . . , 5) represents Dµ and Dµ̇.

Field strength. As special cases of these covariant derivatives, we define the following

field strengths of the tensor field.

Hλµ̇ν̇ = ǫ
µ̇ν̇λ̇

DλX
λ̇

= Hλµ̇ν̇ − gǫσ̇τ̇ ρ̇(∂σ̇bλτ̇ )∂ρ̇bµ̇ν̇ , (4.23)

H1̇2̇3̇ = g2{X 1̇,X 2̇,X 3̇} − 1

g
=

1

g
(V − 1)

= H1̇2̇3̇ +
g

2
(∂µ̇b

µ̇∂ν̇b
ν̇ − ∂µ̇b

ν̇∂ν̇b
µ̇) + g2{b1̇, b2̇, b3̇}, (4.24)

where V is the “induced volume”

V = g3{X 1̇,X 2̇,X 3̇}, (4.25)
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and H is the linear part of the field strength

Hλµ̇ν̇ = ∂λbµ̇ν̇ − ∂µ̇bλν̇ + ∂ν̇bλµ̇, (4.26)

H
λ̇µ̇ν̇

= ∂
λ̇
bµ̇ν̇ + ∂µ̇bν̇λ̇

+ ∂ν̇bλ̇µ̇
. (4.27)

H are covariantly transformed under the gauge transformation.

Just like the case of ordinary gauge theories, the field strength H arises in the com-

mutator of the covariant derivatives defined above:

[Dµ̇,Dν̇ ]Φ = g2ǫν̇µ̇σ̇{H1̇2̇3̇,X
σ̇,Φ}, (4.28)

[Dλ,Dλ̇
]Φ = g2{H

λν̇λ̇
,X ν̇ ,Φ}, (4.29)

[Dµ,Dν ]Φ = − g

V
ǫµνλDρH̃ρλκ̇Dκ̇Φ, (4.30)

where the dual field strength H̃ is defined by

H̃λρκ̇ =
1

2
ǫλρκ̇σµ̇ν̇Hσµ̇ν̇ , H̃µνρ =

1

6
ǫµνρµ̇ν̇ρ̇Hµ̇ν̇ρ̇. (4.31)

5. M5 action and equation of motion

We rewrite the various parts of the Bagger-Lambert action in terms of the six dimensional

fields and their covariant derivatives,

SX + Spot =

∫
d3x

〈
−1

2
(DµX

i)2 − 1

2
(D

λ̇
Xi)2 − 1

4
H2

λµ̇ν̇ − 1

12
H2

µ̇ν̇ρ̇

− 1

2g2
− g4

4
{X µ̇,Xi,Xj}2 − g4

12
{Xi,Xj ,Xk}2

〉
, (5.1)

SΨ + Sint =

∫
d3x

〈
i

2
ΨΓµDµΨ +

i

2
ΨΓρ̇Γ1̇2̇3̇Dρ̇Ψ

+
ig2

2
ΨΓµ̇i{X µ̇,Xi,Ψ} +

ig2

4
ΨΓij{Xi,Xj ,Ψ}

〉
. (5.2)

The scalar kinetic term is manifestly Lorentz symmetric up to the different structure inside

the covariant derivatives Dµ and Dµ̇. The Chern-Simons term cannot be rewritten in

manifestly gauge-covariant form.

SCS =

∫
d3xǫµνλ

〈
−1

2
ǫµ̇ν̇λ̇∂µ̇bµν̇∂νbλλ̇

+
g

6
ǫµ̇ν̇λ̇∂µ̇bνν̇ǫ

ρ̇σ̇τ̇∂σ̇bλρ̇(∂λ̇
bµτ̇ − ∂τ̇ bµλ̇

)
〉

=

∫
d3x

∫

y

ǫµνλ

(
−1

2
dbµ ∧ ∂νbλ − g

6
(∗dbµ) ∧ (∗dbν) ∧ (∗dbλ)

)
. (5.3)

In the second expression we treat bµµ̇ as a one-form field bµ = bµµ̇dy
µ̇ in the y-space.

However, the equation of motion which is derived from these actions turns out to be

manifestly gauge-covariant.
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Comments on fermion action. In the fermion kinetic terms in (5.2), only the

SO(1, 2) × SO(3) subgroup of the Lorentz symmetry is manifest due to the existence of

Γ1̇2̇3̇ in one of two terms. We can remove this unwanted factor from the kinetic term by

the unitary transformation

Ψ = Ψ
′
U, Ψ = UΨ′, (5.4)

where U is the matrix

U = exp
(
−π

4
Γ1̇2̇3̇

)
=

1√
2
(1 − Γ1̇2̇3̇). (5.5)

The SUSY parameter ǫ is also transformed in the same way. Note that both Ψ and Ψ

are transformed by U . This is consistent with the Dirac conjugation. As the result of the

unitary transformation, the fermion terms in the action become

SΨ + Sint =

∫
d3x

〈
i

2
Ψ

′
ΓµDµΨ′ +

i

2
Ψ

′
Γρ̇Dρ̇Ψ

′

+
ig2

2
Ψ

′
Γµ̇i{X µ̇,Xi,Ψ′} − ig2

4
Ψ

′
ΓijΓ1̇2̇3̇{Xi,Xj ,Ψ′}

〉
. (5.6)

After the unitary transformation, the condition (2.15) becomes the chirality condition in

six dimension,

Γ7ǫ′ = ǫ′, Γ7Ψ′ = −Ψ′, (5.7)

where the chirality matrix Γ7 is defined by

ΓµνρΓ1̇2̇3̇ = ǫµνρΓ7. (5.8)

This means that the supersymmetry realized in this theory is the chiral N = (2, 0) super-

symmetry, which is the same as the supersymmetry on an M5-brane.

Equations of motion. It is easy to obtain the equations of motion for the scalar fields

and fermion field as

0 = D2
µX

i + D2
µ̇X

i

+g4{X µ̇,Xj , {X µ̇,Xj ,Xi}} +
g4

2
{Xj ,Xk, {Xj ,Xk,Xi}}

+
ig2

2
{Ψ′

Γµ̇i,X
µ̇,Ψ′} +

ig2

2
{Ψ′

ΓijΓ1̇2̇3̇,X
j ,Ψ′}, (5.9)

0 = ΓµDµΨ′ + Γρ̇Dρ̇Ψ
′ + g2Γµ̇i{X µ̇,Xi,Ψ′} − g2

2
ΓijΓ1̇2̇3̇{Xi,Xj ,Ψ′}. (5.10)

The equations of motion of gauge fields bµµ̇ and bµ̇µ̇, and the Bianchi identity are combined

into the self-dual form:

DλHλµ̇ν̇ + D
λ̇
Hλ̇µ̇ν̇ = gJ µ̇ν̇ , (5.11)

DλH̃λµν̇ + D
λ̇
Hλ̇µν̇ = gJµν̇ , (5.12)

DλH̃λµν + D
λ̇
H̃λ̇µν = 0. (5.13)
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The first two are equations of motion obtained from the action, while the last one is a

Bianchi identity derived from the commutation relation (4.30). The currents on the right

hand sides are given by

J ρ̇σ̇ = g({Xi,Dσ̇X
i,X ρ̇} − (ρ̇↔ σ̇)) − g3

2
ǫρ̇σ̇µ̇{Xi,Xj , {Xi,Xj ,X µ̇}}

+
ig

2
({Ψ′

Γσ̇,X ρ̇,Ψ′} − (ρ̇↔ σ̇)) +
ig

2
ǫρ̇σ̇µ̇{Ψ′

Γµ̇i,X
i,Ψ′}, (5.14)

Jµν̇ = g{Xi,DµX
i,X ν̇} +

ig

2
{Ψ′

Γµ,Ψ′,X ν̇}. (5.15)

The self-dual tensor field H, chiral fermion field Ψ′, and the five scalar fields Xi form a

tensor multiplet of N = (2, 0) supersymmetry [13], which is the same as the field contents

on an M5-brane.

6. Supersymmetry

In this section we rewrite the supersymmetry transformations (2.18)-(2.20) in terms of the

six-dimensional covariant derivatives and field strength. The transformation law (2.20) of

the gauge field Aµab with coupling constant inderted is

Ãµ
b
a = igǭΓµΓIX

I
c Ψdf

cdb
a. (6.1)

We cannot determine uniquely the transformation law of the component field bµν̇ from this

equation because of the existence of the gauge transformation (4.13), which acts only on

bµµ̇. In fact, the transformation (6.1) only gives

δ
(
ǫµ̇ν̇ρ̇∂µ̇bλν̇∂ρ̇f(y)

)
= igǭΓλΓI{XI ,Ψ, f(y)}, (6.2)

where f(y) is an arbitrary function of yµ̇. One possible choice for δbµµ̇ is

δbµν̇ = ig(ǭΓIΓµΨ)∂ν̇X
I . (6.3)

We can easily check that this transformation law reproduces (6.2).

In some situations an explicit appearance of bµµ̇ is not necessary, but all we need is

Bµ
µ̇ ≡ ǫµ̇ν̇ρ̇∂ν̇bµρ̇, which satisfies the constraint ∂µ̇Bµ

µ̇ = 0. The SUSY transformation for

Bµ
µ̇ is uniquely determined from (6.2) as

δBµ
µ̇ = igǭΓµΓIǫ

µ̇ν̇λ̇∂ν̇X
I∂

λ̇
Ψ, (6.4)

and it is obvious that the constraint is SUSY invariant, i.e.

δ(∂µ̇Bµ
µ̇) = 0. (6.5)

The transformation laws rewritten in terms of the six-dimensional notation are

δXi = iǫ′ΓiΨ′, (6.6)

δΨ′ = DµX
iΓµΓiǫ′ + Dµ̇X

iΓµ̇Γiǫ′

−1

2
Hµν̇ρ̇Γ

µΓν̇ρ̇ǫ′ −
(

1

g
+ H1̇2̇3̇

)
Γ1̇2̇3̇ǫ

′

−g
2

2
{X µ̇,Xi,Xj}Γµ̇Γijǫ′ +

g2

6
{Xi,Xj ,Xk}ΓijkΓ1̇2̇3̇ǫ′, (6.7)
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δbµ̇ν̇ = −i(ǫ′Γµ̇ν̇Ψ
′), (6.8)

δbµν̇ = −iV (ǫ′ΓµΓν̇Ψ
′) + ig(ǫΓµΓiΓ1̇2̇3̇Ψ

′)∂ν̇X
i. (6.9)

A peculiar property of this SUSY transformation is that the perturbative vacuum (the

configuration with all fields vanishing) is not invariant under this transformation due to the

term in δΨ′ proportional to 1/g. We can naturally interpret this term as a contribution of

the background C-field. In the M5-brane action coupled to background fields, the self-dual

field strength is defined by H = db+C (up to coefficients depending on conventions). The

inclusion of C-field in the field strength is required by the invariance of the action under

C-field gauge transformations. The shift of the field strength H1̇2̇3̇ by (1/g) in the action

as well as in the SUSY transformation suggests that the relation C ∝ g−1 between the

Nambu-Poisson structure and the C-field background. This statement of course depends

on the normalization of the gauge field C. For more detail about this relation, see section 7,

where we derive the precise form of this relation including the numerical coefficients.

In fact, M5-brane in a constant C-field background is still 1/2 BPS. The effect of the

C-field is changing which half of 32 supersymmetries remain unbroken. We can find this

phenomenon in our six-dimensional theory. In addition to 16 supersymmetries we described

above, the theory has 16 non-linear fermionic symmetries δ(nl), which shift the fermion by

a constant spinor

δ(nl)Ψ′ = χ, δ(nl)Xi = δ(nl)bµ̇ν̇ = δ(nl)bµν̇ = 0. (6.10)

The action is invariant under this transformation because constant functions in yµ̇ space are

in the center of the 3-algebra. The perturbative vacuum is invariant under the combination

of two fermionic symmetries

δǫ′ −
1

g
δ
(nl)
ǫ′ . (6.11)

In the weak coupling limit g → 0, the transformation laws for this combined symmetry

agree with those of an N = (2, 0) tensor multiplet [14].

δXi = iǫ′ΓiΨ′, (6.12)

δΨ′ = ∂µX
iΓµΓiǫ′ − 1

12
HµνρΓ

µνρǫ′, (6.13)

δbµν = −i(ǫ′ΓµνΨ
′). (6.14)

We obtained the transformation (6.14) only for µν = µ̇ν̇ and µν̇. To obtain the transfor-

mation law of the bµν components, we first compute the transformation of Hµ̇ν̇ρ̇ and Hµν̇ρ̇

by using the transformation law of bµ̇ν̇ and bµν̇ . Because the field strength is self-dual, it

also gives δH̃µνρ̇ and δH̃µνρ. The equations of motion (5.11) and (5.12) are the Bianchi

identities as well for these components of field strength. If we can solve these Bianchi

identities on shell and express them by using bµν , we can extract the transformation law

of bµν from δH̃µνρ̇ and δH̃µνρ. In the free field limit g = 0, we can easily carry out this

procedure and obtain (6.14) for bµν .
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7. Derivation of D4 action from M5

In this section we demonstrate that the double dimensional reduction of the six-dimensional

theory correctly reproduces the action of non-commutative U(1) gauge theory, which is

realized on a D4-brane in a B-field background.

We here recover the overall factor T6 in the front of the action. This has mass dimension

6 and can be regarded as the tension of the five-brane, while the coupling constant g is a

dimensionless parameter. We should note that this tension T6 is not necessarily the same

as the usual M5-brane tension TM5, because it may be corrected by the background C-field.

We will later determine the parameters g and T6 by comparing the five dimensional action

obtained by the douple dimensional reduction of the six-dimensional theory to the non-

commutative U(1) action realized on a D4-brane in a B-field background in type IIAtheory.

Once we obtain the expression for g and T6 in terms of type IIAparameters, it will be easy

to rewrite them in terms of the M-theory Planck scale and the magnitude of the C-field.

The double dimensional reduction means that we wrap one leg of the M5-brane on

a compactified dimension, so that through Kaluza-Klein reduction we get one fewer di-

mension for both the target space and the world-volume. Let us choose the compactified

dimension to be X 3̇. In the double dimensional reduction, we suppress y3̇-dependence of

all fields except X 3̇. We have

X 3̇ =
1

g
y3̇, b3̇ = 0. (7.1)

We used a gauge symmetry generated by Λ1̇ and Λ2̇ to set b3̇ = 0. We impose the

periodicity condition

X 3̇ ∼ X 3̇ + L11. (7.2)

The relation (7.1) and (7.2) implies that the compactification period of the coordinate y3̇

is gL11, and thus, the overall factor of the five dimensional theory becomes gL11T6.

Let us now first carry out the dimensional reduction for the bosonic terms in the action.

Since all the fields except X 3̇ have no dependence on y3̇, we set ∂3̇ = 0 unless it acts on

X 3̇. We will use the notation that indices α̇, β̇, . . . take values in {1̇, 2̇}, and a, b, . . . take

values in {0, 1, 2, 1̇, 2̇}. The antisymmetrized tensor ǫα̇β̇ is defined as ǫα̇β̇ = ǫα̇β̇3̇.

Expecting that we will obtain a gauge field theory on a D4-brane, let us define the

gauge potentials

âµ = bµ3̇ âα̇ = bα̇3̇. (7.3)

The covariant derivatives become

DµX
α̇ = −ǫα̇β̇F̂

µβ̇
, DµX

3̇ = −ãµ, DµX
i = D̂µX

i, (7.4)

where F̂ab, ãµ, and D̂a are defined by

F̂ab = ∂aâb − ∂bâa + g{âa, âb}, (7.5)

ãµ = ǫα̇β̇∂α̇bµβ̇
, (7.6)

D̂µΦ = ∂µΦ + g{âµ,Φ}. (7.7)
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The Poisson bracket {·, ·} is defined as the reduction of the Nambu-Poisson bracket

{f, g} = {y3̇, f, g}. (7.8)

We note that the components b
µβ̇

only show up through the form ãµ in D4 action. Thus

we find that, after double dimensional reduction, the scalar kinetic term in the BLG La-

grangian become

−T6

2

∫
d3x〈(DµX

I)2〉 = −gL11T6

2

∫
d3xd2y

(
ã2

µ + F̂ 2
µα̇ + (D̂µX

i)2
)
. (7.9)

The Nambu-Poisson brackets which appear in the potential terms of the BLG action are

{X 1̇,X 2̇,X 3̇} =
1

g2
F̂1̇2̇ +

1

g3
, (7.10)

{X 3̇,Xα̇,Xi} =
1

g2
ǫα̇β̇D̂

β̇
Xi, (7.11)

{X 3̇,Xi,Xj} =
1

g
{Xi,Xj}. (7.12)

The potential term becomes

−T6

12

∫
d3x〈g4{XI ,XJ ,XK}2〉

= gL11T6

∫
d3xd2y

[
−1

2

(
F̂1̇2̇ +

1

g

)2

− 1

2
(Dα̇X

i)2 − g2

4
{Xi,Xj}2

]
. (7.13)

Upon integration over the base space and removing total derivatives, we can replace

(F̂1̇2̇ + 1/g)2 by F̂ 2
1̇2̇

+ 1/g2.

It is also straightforward to show that the Chern-Simons term (5.3) gets simplified

considerably as

−gL11T6

2

∫
d3xd2yǫµνλF̂µν ãλ. (7.14)

Here again the action depends on bµβ̇ only through ãµ. As the action depends on the field

ãµ only algebraically (namely without derivative), we can integrate it out. There are only

two terms involving ãµ and by completing square, we find that the effect of integrating out

ãµ is to replace all terms involving ãµ by

−gL11T6

4

∫
d3xd2yF̂ 2

µν . (7.15)

The fermion part can be evaluated similarly. The covariant derivatives and bracket are

ΓµDµΨ′ = Γµ(∂µΨ′ + g
{
aµ,Ψ

′
}
) := ΓµD̂µΨ′ , (7.16)

1

2
ΓIJ{XI ,XJ ,Ψ′} = Γα̇Γ1̇2̇3̇D̂β̇

Ψ′ + Γ3̇Γi

{
Xi,Ψ′

}
, (7.17)

D̂
β̇
Ψ′ := ∂

β̇
Ψ′ + g{a

β̇
,Ψ′}. (7.18)
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It is quite remarkable that, after collecting all the kinetic, potential and Chern-Simons

temrs, the 4+1 dimensional Lorentz invariance is restored (up to the breaking by the

non-commutativity). The sum of all these terms is simply

gL11T6

∫
d3xd2y

[
−1

2
(D̂aX

i)2 − 1

4
F̂ 2

ab −
g2

4
{Xi,Xj}2 − 1

2g2

+
i

2

(
Ψ̄′′ΓaD̂aΨ

′′ + gΨ̄′′Γi{Xi,Ψ′′}
)]
. (7.19)

We performed the unitary transformation Ψ′ = (1/
√

2)(Γ3̇ + Γ7)Ψ′′ to obtain the correct

chirality condition Γ3̇Ψ
′′ = −Ψ′′ for the gaugino on the D4-brane. (Nore that 3̇ is now the

“eleventh” direction and Γ3̇ is the chirality matrix in IIAtheory.)

Let us compare the action (7.19) with the known result [15, 16] for a D4-brane in a

B-field background, and match the parameters in this theory and those in type IIAstring

theory. The non-commutative gauge theory on D4-brane in a B-field background is de-

scribed with the Moyal product ∗, and the corresponding commutator, the so-called Moyal

bracket [·, ·]Moyal, defined by

f(x) ∗ g(x) = e
i
2
θij ∂

∂ξi
∂

∂ζj f(x+ ξ)g(x + ζ)|ξ=ζ=0, (7.20)

[f, g]Moyal = f ∗ g − g ∗ f = θij∂if∂jg + O(θ3). (7.21)

The non-commutativity parameter θij has the dimension of (length)2. Because the ac-

tion (7.19) includes only finite powers of derivatives, it should be compared to the weak

coupling limit θ → 0 of the non-commutative gauge theory. These two match if we truncate

the Moyal bracket into the Poisson bracket by

[f, g]Moyal →
θ

Tstr
{f, g}, (7.22)

where we turn on the non-commutativity in the 1̇-2̇ directions by setting

θ1̇2̇ =
θ

Tstr
, θµα̇ = θµν = 0. (7.23)

Note that θ is defined as a dimensionless parameter. In the small θ limit, the bosonic part

of the action of the non-commutative U(1) gauge theory on a D4-brane is given by [15, 16]

S =
TD4

θ

∫
d3xd2y

[
−1

2
(DaX

i)2 − 1

4Tstr
F 2

ab −
θ2

4
{Xi,Xj}2 − 1

2θ2

]
, (7.24)

in the open string frame. The world-volume coordinate yα̇ in the open string frame is

related to the target space coordinates Xα̇ by

Xα̇ =
1

θ
yα̇. (7.25)

The covariant derivative and the field strength are

DaX
i = ∂µX

i +
θ

Tstr
{Aa,X

i}, Fab = ∂aAb − ∂bAa +
θ

Tstr
{Aa, Ab}. (7.26)
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We normalize the gauge field Aa so that it couples to the string endpoints by charge 1

through the boundary coupling S =
∫
∂F1A of the fundamental string world-sheet, and

this gauge field has mass dimension 1. In the weak coupling limit, the non-commutativity

parameter θ is related to the background B-field by

B = TstrθdX
1̇ ∧ dX 2̇ =

Tstr

θ
dy1̇ ∧ dy2̇. (7.27)

By comparing two actions (7.19) and (7.24), we obtain the following relations among

parameters:

T6 =
TM5

θ2
, (7.28)

g = θ. (7.29)

To relate quantities in IIAand M-theory, we use the following relations among tensions of

M-branes and IIA-branes.

TD4 = L11TM5, Tstr = L11TD2 = L11TM2. (7.30)

The relation T 2
M2 = 2πTM5 is also useful.

In addition to the agreement of the action through the relations (7.28) and (7.29), we

can check the consistency in some places.

Firstly, the relation (7.25) between the world-volume coordinates and the target space

coordinates can naturally be lifted to the relation (4.7).

Secondly, the overall factor T6 agrees with the effective tension of M2-branes induced

by the background C-field. The background B-field (7.27) is lifted to the background

three-form field

C3 = θTM2dX
1̇ ∧ dX 2̇ ∧ dX 3̇ =

TM2

θ2
dy1̇ ∧ dy2̇ ∧ dy3̇. (7.31)

(We use the convention in which the gauge fields B and C couple to the world-volume

of corresponding branes by charge 1 through the couplings
∫
F1B and

∫
M2C.) Each flux

quantum of this background field induces the charge of a single M2-brane on the M5-brane,

and effective M2-brane density in the y-space is θ−2TM2/(2π). Thus, if we assume that the

tension of M5-brane is dominated by the induced M2-branes, the effective tension becomes

TM2 × θ−2TM2/(2π) = θ−2TM5. This agrees with the overall coefficients T6 given in the

relation (7.28).

Finally, the charge of the self-dual strings is consistent with the Dirac’s quantization

condition. From the comparison of the actions we obtain the relation of gauge fields

âa =
1

Tstr
Aa. (7.32)

As we mentioned above, the gauge field A couples to string endpoints by charge 1. By

the correspondence (7.32) we can determine the strength of the coupling of â and b to

boundaries of the corresponding branes. The boundary interactions are given by

S = Tstr

∫

∂F1
â =

TM2

θ

∫

∂M2
b. (7.33)
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To obtain the second equality in (7.33), we used the fact that a string endpoint is lifted to

an M2-brane boundary wrapped on the S1 along y3̇ with period gL11. The coupling (7.33)

shows that the charge of self-dual strings (boundary of M2-branes ending on the M5-brane)

is Q = θ−1TM2. Because the gauge field b is a self-dual field, Q is the electric charge as well

as the magnetic charge of a self-dual string, and it must satisfy the Dirac’s quantization

condition
Q2

T6
= 2π. (7.34)

We can easily check that this relation certainly holds.

We can now explain the constant shift in the field strength as follows. The M2-brane

action includes the following coupling to the bulk 3-form field C and the self-dual 2-form

field b:

SM2 =

∫

M2
C3 +

TM2

θ

∫

∂M2
b. (7.35)

The gauge invariance of this action requires that under the gauge transformation

δC3 = dα2, the self-dual field on the M5-brane must transform as δb2 = −α2/(θ
−1TM2).

Thus, the gauge invariant field strength H of the tensor field b should be defined by

H = db+
θ

TM2
C. (7.36)

Therefore, the background gauge field (7.31) shifts the field strength as

H = db+
1

θ
dy1̇ ∧ dy2̇ ∧ dy3̇. (7.37)

This is the same as the constant shift in the definition (4.24) of H1̇2̇3̇.

Now we have relations between parameters in the BLG theory and those in M-theory.

The D4-brane action obtained by the double dimensional reduction is the weak coupling

(g = θ → 0) limit of non-commutative U(1) theory because the Moyal bracket is replaced

by the Poisson bracket. The coupling constant is determined by the background C-field,

and the weak coupling means strong C-field background through the relation (7.31). Our

M5-brane theory is expected to apply better to the limit of large C-field background. This

is also confirmed in the comparison of the five-brane tension. As we mentioned above, the

effective tension T6 is dominated by the tension of M2-branes induced by the background

C-field. This is the case when the background C-field is very large.

For a finite C-field background, we expect that the Nambu-Poisson bracket should be

replaced by a quantum Nambu bracket.

8. Seiberg-Witten map

It was found by Seiberg and Witten [16] that the gauge symmetry on a noncommmutative

space can be matched with the gauge symmetry on a classical space via the so-called

Seiberg-Witten map

δ̂
λ̂
Φ̂(Φ) = Φ̂(Φ + δλΦ) − Φ̂(Φ), (8.1)
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where Φ̂(Φ) is the field variable, and δ̂
λ̂

the gauge transformation in the noncommutative

gauge theory corresponding to Φ and δλ living on the classical space. The gauge

transformation parameter λ̂(A,λ) in the noncommutative gauge theory is a function of

the gauge potential A and gauge transformation parameter λ in the gauge theory on

classical spacetime. The Seiberg-Witten map is found as an infinite expansion of the

noncommutativity parameters.

In this section we find the Seiberg-Witten map connecting the gauge theories on space-

times with and without the Nambu-Poisson structure, corresponding to M5-brane theories

in trivial or constant C-field background. In this section only, we denote all variables in

our M5-brane theory by symbols with hats, and those in trivial backgrounds by symbols

without hats. As g → 0, the variables with hats should reduce to those without hats.

In the trivial background, we have the gauge fields bµ̇ν̇ , bµµ̇ and gauge transformations

δΛbµ̇ν̇ = ∂µ̇Λν̇ − ∂ν̇Λµ̇, δΛbµµ̇ = ∂µΛµ̇ − ∂µ̇Λµ. (8.2)

In the M5-brane theory with a C-field background, we have

δ̂Λ̂b̂µ̇ν̇ = ∂µ̇Λ̂ν̇ − ∂ν̇Λ̂µ̇ + gκ̂λ̇∂
λ̇
b̂µ̇ν̇ , (8.3)

δ̂Λ̂b̂µµ̇ = ∂µΛ̂µ̇ − ∂µ̇Λ̂µ + gκ̂ν̇∂ν̇ b̂µµ̇ + g(∂µ̇κ̂
ν̇)b̂µν̇ . (8.4)

It will be convenient to use the following variables

b̂µ̇ ≡ ǫµ̇ν̇λ̇b̂
ν̇λ̇
, B̂µ

µ̇ ≡ ǫµ̇ν̇λ̇∂ν̇ b̂µλ̇
. (8.5)

instead of b̂µ̇ν̇ and b̂µµ̇. Similarly we define bµ̇ and Bµ
µ̇ in the same way. We shall impose

the constraints

∂µ̇B̂µ
µ̇ = 0, and ∂µ̇Bµ

µ̇ = 0 (8.6)

on B̂µ
µ̇ and Bµ

µ̇ so that the existence of b̂µµ̇ and bµµ̇ is guaranteed when the former are

given. The gauge transformations of the new variables are

δ̂Λ̂b̂
µ̇ = κ̂µ̇ + gκ̂ν̇∂ν̇ b̂

µ̇, δ̂Λ̂B̂µ
µ̇ = ∂µκ̂

µ̇ + gκ̂ν̇∂ν̇B̂µ
µ̇ − g(∂ν̇ κ̂

µ̇)B̂µ
ν̇ , (8.7)

where

κ̂µ̇ ≡ ǫµ̇ν̇λ̇∂ν̇Λ̂
λ̇

(8.8)

was denoted by δΛy
µ̇ above, and it satisfies

∂µ̇κ̂
µ̇ = 0. (8.9)

Analogous to all these equations above, we have the corresponding equations for variables

on a M5-brane in the trivial background. They can be obtained by taking the g → 0 limit as

δΛb
µ̇ = κµ̇, δΛBµ

µ̇ = ∂µκ
µ̇, κµ̇ = ǫµ̇ν̇λ̇∂ν̇Λλ̇

. (8.10)

We need two Seiberg-Witten maps b̂µ̇(b) and B̂µ
µ̇(B, b) satisfying

δ̂Λ̂b̂
µ̇(b) = b̂µ̇(b+ δΛb) − b̂µ̇(b), (8.11)

δ̂Λ̂B̂µ
µ̇(B, b) = B̂µ

µ̇(B + δΛB, b+ δΛb) − B̂µ
µ̇(B, b). (8.12)
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The solutions would be infinite expansions in g. To the first order terms in g, we find the

solution as

b̂µ̇(b) = bµ̇ +
g

2
bν̇∂ν̇b

µ̇ +
g

2
bµ̇∂ν̇b

ν̇ + O(g2), (8.13)

B̂µ
µ̇(B, b) = Bµ

µ̇ + gbν̇∂ν̇Bµ
µ̇ − g

2
bν̇∂µ∂ν̇b

µ̇ +
g

2
bµ̇∂µ∂ν̇b

ν̇ + g∂ν̇b
ν̇Bµ

µ̇

−g∂ν̇b
µ̇Bµ

ν̇ − g

2
∂ν̇b

ν̇∂µb
µ̇ +

g

2
∂ν̇b

µ̇∂µb
ν̇ + O(g2), (8.14)

κ̂µ̇(κ, b) = κµ̇ +
g

2
bν̇∂ν̇κ

µ̇ +
g

2
(∂ν̇b

ν̇)κµ̇ − g

2
(∂ν̇b

µ̇)κν̇ + O(g2). (8.15)

Some of the coefficients here are not completely fixed by the Seiberg-Witten map condi-

tions (8.11)–(8.12), but they are uniquely determined by the requirement that the con-

straint (8.6) is preserved by the Seiberg-Witten map. It should be possible to solve for

higher order terms order by order.

To be complete, let us consider XI and Ψ, or anything that transforms like

δΦ̂ = gκ̂µ̇∂µ̇Φ̂. (8.16)

The classical counterpart of Φ̂ has

δΦ = 0. (8.17)

The Seiberg-Witten map condition (8.1) is easy to solve for this case to obtain the first

order terms, and the solution is

Φ̂ = Φ + gbµ̇∂µ̇Φ + O(g2). (8.18)

A comment is needed here regarding the map between κ̂µ̇ and κµ̇, which are defined in

terms of the gauge transformation parameters Λ̂µ̇ and Λµ̇. If one wants to determine the

map between Λ̂µ̇ and Λµ̇, it is necessary to fix the ambiguity in the gauge parameters for a

given gauge transformation. It is obvious that the transformation of the gauge parameters

Λ̂µ̇ → Λ̂µ̇ + ∂µ̇ξ̂, Λ̂µ → Λ̂µ + ∂µξ̂, (8.19)

Λµ̇ → Λµ̇ + ∂µ̇ξ, Λµ → Λµ + ∂µξ (8.20)

does not change the gauge transformations (8.2)–(8.4) at all. To avoid this ambiguity in

the gauge transformation parameters, we can use κ̂µ̇ and κµ̇ instead, and the existence of

Λ̂µ̇ and Λµ̇ are guaranteed by the constraints (8.9). One can check that the constraint (8.9)

is preserved by the Seiberg-Witten map (8.15).

The ambiguity involved here is in the same form as a gauge transformation of 1-form

gauge fields, and hence we can “gauge fix” the gauge transformation parameters by the

following constraints

∂µ̇Λ̂µ̇ = 0, ∂µ̇Λµ̇ = 0. (8.21)

(Here we are raising and lowering indices using the metric δµ̇ν̇ on N .) We can solve these

constraints by

Λ̂µ̇ = ǫµ̇ν̇λ̇∂ν̇ η̂λ̇
, Λµ̇ = ǫµ̇ν̇λ̇∂ν̇ηλ̇

, (8.22)
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and again we can demand the constraints

∂µ̇η̂
µ̇ = 0, ∂µ̇η

µ̇ = 0 (8.23)

on the parameters η̂µ̇ and ηµ̇, in terms of which we have

κ̂µ̇ = −∂2η̂µ̇, κµ̇ = −∂2ηµ̇, (8.24)

where ∂2 ≡ ∂µ̇∂
µ̇ is the Laplace operator on N . This allows us to deduce the Seiberg-Witten

map between η̂µ̇ and ηµ̇, and finally the Seiberg-Witten map for the gauge transformation

parameters can be expressed in the following nonlocal form

Λ̂µ̇ = Λµ̇ − g

2
ǫµ̇ν̇λ̇∂−2∂ν̇ [b

ρ̇∂ρ̇κλ + (∂ρ̇b
ρ̇)κλ − (∂ρ̇bλ̇)κρ̇] + · · · . (8.25)

9. Interpretations of the M5-brane theory

9.1 As a field theory of the Nambu-Poisson structure

The gauge symmetry of the M5 world-volume theory is the volume-preserving diffeomor-

phism on N . The transformation law for both Xi and Ψ are given in the same form

δΛΦ = gδΛy
µ̇∂µ̇Φ, (9.1)

where the volume-preserving coordinate transformation

δΛy
µ̇ = ǫµ̇ν̇λ̇∂ν̇Λλ̇

(9.2)

is parametrized by three arbitrary functions Λµ̇.

In the above we have considered bµµ̇ and bµ̇ν̇ as the gauge fields for the volume-

preserving diffeomorphisms. Here we give a geometrical interpretation to these quantities

in terms of deformations of the Nambu-Poisson structure.

The degrees of freedom corresponding to bµ̇ν̇ , or equivalently bµ̇, is easy to understand.

It arises in X µ̇ (4.7), and yµ̇ is a longitudinal coordinate on the M5 brane. Thus bµ̇ cor-

responds to a coordinate transformation on N , which is not necessarily volume-preserving

because ∂µ̇b
µ̇ may be nonzero. In fact, one can view bµ̇ as a parametrization of the defor-

mations of the Nambu-Poisson structure due to a change of the coordinates

yµ̇ → gX µ̇ = yµ̇ + gbµ̇. (9.3)

That is,

{f, g, h} = ǫµ̇ν̇λ̇∂µ̇f∂ν̇g∂λ̇
h → g−3ǫµ̇ν̇λ̇ ∂

∂X µ̇
f

∂

∂X ν̇
g

∂

∂X λ̇
h. (9.4)

While bµ̇ is used to parametrize deformations of the Nambu-Poisson structure, infinitesimal

coordinate transformations

δbµ̇ = δyµ̇ + gδyν̇∂ν̇b
µ̇ g→0→ δyµ̇, (9.5)

which preserve the Nambu-Poisson bracket, should be regarded as gauge transformations
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The other gauge potential bµµ̇ appears in the covariant derivative (4.20)

Dµ = ∂µ − gBµ
µ̇∂µ̇, (9.6)

where

Bµ
µ̇ = ǫµ̇ν̇λ̇∂ν̇bµλ̇

. (9.7)

Formally, the expression of the Dµ suggests that Bµ
µ̇ is the gauge potential and ∂µ̇ is the

gauge symmetry generator, which also appears in (9.1). Indeed, instead of defining Bµ
µ̇

in terms of bµµ̇, one can view Bµ
µ̇ as the fundamental gauge potential, and guarantee the

existence of bµµ̇ through the constraint

∂µ̇Bµ
µ̇ = 0. (9.8)

The gauge field Bµ
µ̇ is reminiscent of the gauge field parametrizing complex structure

deformations on a Calabi-Yau 3-manifold in the Kodaira-Spencer theory [9].

Consider a generic 6 dimensional space equipped with a Nambu-Poisson structure. The

decomposability of the Nambu-Poisson bracket implies that locally we can always choose 3

coordinates yµ̇ such that the Nambu-Poisson bracket is just the Jacobian factor (3.3). Thus

the Nambu-Poisson structure induces the separation of local coordinates into the two sets

{xµ} and {yµ̇}. This is analogous to the situation of a complex manifold, for which there

are holomorphic zi and anti-holomorphic z̄ ī coordinates. A deformation of the complex

structure can be described by specifying how the notion of holomorphicity is changed. A

function on the complex manifold is holomorphic if

∂̄f = 0 → ∂īf = 0. (9.9)

When the complex structure is deformed, the anti-holomorphic exterior derivative is

changed

∂̄ → ∂̄A = dz̄ īDī, (9.10)

where

Dī = ∂ī +Aī
i∂i. (9.11)

The gauge potential Aī
i parametrizes how much mixing occurs between the holomorphic

and anti-holomorphic coordinates due to the deformation of complex structure. In our

M5-brane theory, Bµ
µ̇ plays a similar role as Aī

i, and the covariant derivative Dµ can be

viewed as a deformation of the derivative with respect to xµ. It should be understood as

a specification of how much the coordinates xµ and yµ̇ are mixed by a deformation of the

Nambu-Poisson structure. While the Kodaira-Spencer theory [9] is a dynamical theory of

the complex structure, the M5-brane theory can be understood as a dynamical theory of

the Nambu-Poisson structure.

To be more persuasive, we can make the analogy between the Kodaira-Spencer theory

of complex structure and the M5-brane theory of Nambu-Poisson structure more explicit.

For a Calabi-Yau 3-fold, there is a unique holomorphic (3, 0)-form Ω = 1
3!Ωijkdz

idzjdzk.

This allows us to impose a constraint on the gauge potential A as

∂A′ = 0 ⇔ Ωijk∂iAījk = 0, (9.12)
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where

A′ = (Ω · A), i.e. A′
ījk

= ΩijkAī
i. (9.13)

The (3, 0)-form Ω is analogous to the Nambu-Poisson tensor field, which is taken to be

gǫµ̇ν̇λ̇ by suitably choosing the coordinates yµ̇. If we carry out the substitution

A→ B, Ωijk → gǫµ̇ν̇λ̇, zi → yµ̇, (9.14)

the constraint (9.12) is precisely the constraint (9.8) which guarantees the existence of bµµ̇.

Furthermore, the Kodaira-Spencer equation [17], which is equivalent to the nilpotency

condition of the deformed anti-holomorphic exterior derivative (9.10), is

∂̄A∂̄A = 0, ⇔ [Dī,Dj̄ ] = 0. (9.15)

If we turn off all other fields Xi,Ψ and bµ̇, the equation of motion for Bµ
µ̇ is

[Dµ,Dν ] = 0. (9.16)

This is exactly what one obtains from (9.15) via the replacement (9.14).

To summarize, while bµµ̇ and bµ̇ν̇ are viewed as the gauge potentials for the gauge

symmetry of coordinate transformations preserving a given Nambu-Poisson structure, Bµ
µ̇

and bµ̇ should be viewed as two types of deformation parameters of the Nambu-Poisson

structure of the M5-brane world-volume. We have bµ̇ specifying the change of the Nambu-

Poisson structure due to a change of coordinates δyµ̇ in N (so that the volume form is

changed), and Bµ
µ̇ the change due to a mixing of the two classes of coordinates xµ and

yµ̇. The gauge symmetry corresponds to redundant descriptions of deformations of the

Nambu-Poisson structure. The M5-brane theory with a self-dual gauge field can thus be

interpreted as a dynamical theory of the Nambu-Poisson structure.

9.2 As an effective theory in large C-field background

The M5-brane action obtained from the BL action with the Nambu-Poisson algebra should

be interpreted as the M5-brane theory in a large C-field background. In section 6, we find

this interpretation to be consistent with the properties of the supersymmetry. Furthermore,

in section 7, the noncommutative D4-brane action obtained via a double dimensional re-

duction from the M5 theory has g ∼ θ. As it is well known that for a D4-brane the

noncommutativity parameter θ is given by B−1 in the large B-field background, we de-

duce that (with the specific normalization of C-field such that the self-dual field strength

becomes H = db+ C)

g ∼ C−1 (9.17)

in the large C-field background for our M5-brane theory.

In [1], an analogy was made between the Nambu-Poisson structure on M5-brane and

the Poisson structure on D-branes. For a D-brane in a constant B-field background, the

effective D-brane theory is best described as a noncommutative field theory. In the limit of

both large and small B-field background, the noncommutativity is small and the commu-

tator can be approximated by a Poisson bracket, and the Poisson structure is determined

– 24 –



J
H
E
P
0
8
(
2
0
0
8
)
0
1
4

by the two-form B-field background. More precisely, the gauge-invariant quantity which

should be used to specify the background is F = B+F , where F = dA is the field strength

of a gauge field A in the D-brane world-volume theory. We can fix the gauge so that

the background value of F = B. Then a nontrivial configuration of the gauge field A

corresponds to a change of F , and thus a change of the Poisson structure.

The invariant self-dual 3-form field strength on the M5-brane is H = C + db, where b

is the 2-form gauge potential on the M5-brane. The Nambu-Poisson structure determined

by a given background H = C is therefore deformed by turning on b, while a gauge

transformations of b preserves H and thus the Nambu-Poisson structure.

In the case of D-branes in B-field background, there are several different ways to verify

the connection between B-field background and the noncommutativity. One way is to quan-

tize an open string ending on a D-brane and check that the endpoint coordinates obey a

commutation relation determined by the B-field background [18]. Or one can compute open

string scattering amplitudes [19]. Another way [16] is to find the Seiberg-Witten map which

maps the commutative field A to the noncommutative field Â, and then check that the

(commutative) D-brane field theory with B-field background explicitly turned on is approx-

imately the same as the noncommutative field theory without explicit B-field background.

Quantization of open membranes in the large C-field background has been extensively

studied in the literature [20, 21]. However, quantization is by its nature associated with

a Poisson structure, and thus the appearance of a Nambu-Poisson structure can not be

manifest. On the other hand, in [22], the scattering amplitudes of open membranes were

studied in a large C-field background, and the result indicated that indeed the C-field

background induces a Nambu-Poisson structure.

As a further support of our interpretation of the Nambu-Poisson structure as an effect

of the C-field background, in the previous section we found the Seiberg-Witten map which

matches the gauge transformation of ordinary M5-brane theory with the deformed gauge

transformation (4.14)–(4.17) supposedly corresponding to a C-field background.

10. Further remarks

Quantization of the coefficients of Chern-Simons term. In section 3 we showed

that if the internal space is N = R3 the model has no coupling constant at all. What

happens when N is a non-trivial space? In such a case there may not be any simple way to

remove the coupling constant by re-scaling of fields. It is an interesting problem to clarify

constraints imposed on this coupling constant. For the case when the 3-algebra is taken to

be A4, Bagger and Lambert [2] have shown that the eigenvalues of the structure constant

fabcd ∼ ǫabcd must be quantized as λ = π/k for k = 1, 2, 3 · · · . It implies that in BLG

model there are no tunable continuous parameters in the theory. In this paper, we have

used Lie 3-algebras which has an infinite number of generators. One may wonder if we

might have a similar constraint for the structure constant, especially if the internal space

N is a compact space. For N = T 3, for example, the generators are labeled by ~n ∈ Z3 and
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the structure constant becomes [1]

f~n1~n2~n3~n4 =
α

V
~n1 · (~n2 × ~n3)δ~n1+~n2+~n3+~n4,0 , (10.1)

where V is the volume of T 3 and α is a constant. It is known that for any Lie 3-algebra with

finite number of generators and positive invariant metric can be reduced to the direct sum

of A4 [23]. Here we have a consistent Lie 3-algebra with positive definite metric while the

number of generators is infinite. A natural question is whether our algebra such as (10.1)

can be understood as the direct (and infinite) sum of A4. If this is the case, we need to

have a similar quantization condition for the structure constant. It will be very interesting

if such quantization of parameter exists in the compact internal space N .

Global structure of internal space. The classification of possible internal manifold

N is another challenging issue. What is required in this paper is that

(i) N is covered by patches with local coordinates yµ̇ and

(ii) on the intersection of different patches the local coordinates are related with each

other by the volume-preserving diffeomorphism.

T 3 is an obvious example of manifold with such structure. In order to understand the

relation between M2 and M5, the mathematical classification N will be indispensable.

Multiple/long M5-brane. In our paper, we construct a single M5-brane action from

the BLG model. One of the most challenging issue is how to construct the action of multiple

M5-branes. For that purpose, we need to construct a set of generators TAχa(y), where TA

(A = 1, . . . , d) are the generators of an internal algebra and χa(y) is the basis of functions

on N . However, as far as we try, it seems difficult to find 3-algebras of this form which

satisfies the fundamental identity.

One idea to understand the nature of this problem is to consider the multiple cover of

N . Let us take the simplest example T 3 and take all of its radius to 2π for simplicity. Then

the basis of functions is of the form exp(i
∑3̇

µ̇=1̇ nµ̇y
µ̇) where nµ̇ is integer. Suppose one

takes the double cover in y1̇ direction. Then it may be possible to take n1̇ to be half integer.

So we have two sets of generators, one χ~n for n1̇ ∈ Z and the other χ~n for n1̇ ∈ Z+1/2. We

write the former generators as T ~n and the latter as S~n. It is then elementary to show that

{T, T, T} ∼ T, {T, T, S} ∼ S, {T, S, S} ∼ T, {S, S, S} ∼ S . (10.2)

So the 3-algebra of original T 3 is contained in the algebra of covering space as a subalgebra.

It is not difficult to show that similar effect occurs in general. Namely let us denote the

3-algebra associated with 3-manifold N as AN and let Ñ be a covering space of N . Then

AN becomes a subalgebra of A
Ñ

. Since A
Ñ

is not the direct product of A
Ñ

with finite

Lie 3-algebra as above, A
Ñ

does not describe multiple M5 but it describes long M5 which

wraps N several times. Such a connection, however, may be helpful to understand the

multiple M5 in the future.
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Vortex string and volume-preserving diffeomorphism. As we commented, in our

construction of M5-brane action, we do not need the metric on N but only its volume

form, or in other words, the 3-form flux C on it. Our computation further implied that it is

natural to assume that there is a very large 3-form flux C on the M5 world-volume. This set-

up reminds us of the open membrane in large C flux. Since we can neglect the Nambu-Goto

part (which contains the metric), the action becomes that of the topological membrane [24],

S ∼
∫
CµνρdX

µ ∧ dXν ∧ dXρ . (10.3)

When this membrane has the boundary on M5, this topological action gives

S ∼
∫
CµνρX

µdXν ∧ dXρ . (10.4)

It gives an action for the string which describes the boundary of the open membrane.

When the target space has 3 dimensions and C ∼ ǫµ̇ν̇λ̇, this action is identical to the

kinetic term of the vortex string [25], which was found long ago. In the supermembrane

context it was studied in [20 – 22]. In particular it was found that it can be equipped

with the Poisson structure with the constraint associated with the diffeomorphism which

defines the volume-preserving diffeomorphism naturally [21],

δX µ̇ = {X µ̇, ω(f, g)}D = vµ̇(X) + · · · , (10.5)

vµ̇ = ǫµ̇ν̇λ̇∂ν̇f∂λ̇
g , ∂µ̇v

µ̇ = 0 , (10.6)

ω(f, g) :=

∫
dσf(X)dg(X) . (10.7)

Here { , }D is the Dirac bracket associated with the kinetic term and · · · in the first

line describe the extra variation along the world-sheet which can be absorbed by the

reparametrization of the world-sheet. In Bagger-Lambert theory, the gauge parameter has

an unusual feature that it has two index Λab. In this picture, this structure is naturally

interpreted as a result of the fact that for the string we can introduce two functions f, g

to define the generators on the world-sheet. We hope that this connection with the vortex

string would give a new insight into the BLG model.
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A. Derivation of some equations

In this appendix we derive some equations used in the main text. We first derive the

commutation relation (4.30). By using the explicit form of the covariant derivative

in (4.20), we obtain

[Dµ,Dν ]Φ = −gF κ̇
µν∂κ̇Φ, (A.1)

where the explicit form of F κ̇
µν in terms of the potential is

F κ̇
µν = ǫκ̇µ̇ν̇∂µ∂µ̇bνν̇ − gǫµ̇ν̇ρ̇∂µ̇bµν̇ǫ

κ̇λ̇τ̇∂ρ̇∂λ̇
bντ̇ − (µ↔ ν). (A.2)

Because the (non-covariant) derivative appears on the right hand side, F κ̇
µν defined

by (A.1) is not covariant. We can define the covariantized F by

[Dµ,Dν ]Φ = −gF κ̇
µνDκ̇Φ. (A.3)

These two fields are related by F κ̇
µν∂κ̇Φ = F κ̇

µνDκ̇Φ, and by substituting Φ = X µ̇ into this

relation and using

gDµ̇X
σ̇ = V δσ̇

µ̇ , (A.4)

we obtain

V F κ̇
µν = gF λ̇

µν∂λ̇X
κ̇. (A.5)

F can be expressed as the covariant derivative of the field strength H.

V F κ̇
µν = gF λ̇

µνDλ̇
X κ̇ = ǫµνλǫ

λρσDρDσX
κ̇ = ǫµνλDρH̃ρλκ̇. (A.6)

In the first step we used the relation (A.4). Substituting this into (A.3), we obtain (4.30).

Next, let us consider the equations of motion of the gauge fields bµ̇ν̇ and bµν̇ . For a

variation of bµ̇ν̇ , we have the following variations of the action.

δSX =

∫
d3x〈δbµ̇DµDµX

µ̇〉 =
1

2

∫
d3x〈δbµ̇ǫµ̇ρ̇σ̇DµHµρ̇σ̇〉 (A.7)

δSpot =
g4

2

∫
d3x〈δbµ̇{XI ,XJ , {XI ,XJ ,X µ̇}}〉, (A.8)

δSint =
ig2

2

∫
d3x〈Ψ,Γµ̇J{δbµ̇,XJ ,Ψ}〉 = − ig

2

2

∫
d3x〈δbµ̇{ΨΓµ̇J ,X

J ,Ψ}〉, (A.9)

and the equation of motion is

0 =
1

2
ǫµ̇ρ̇σ̇DµHµρ̇σ̇ +

g4

2
{XI ,XJ , {XI ,XJ ,X µ̇}} − ig2

2
〈δbµ̇{ΨΓµ̇J ,X

J ,Ψ}〉

=
1

2
ǫµ̇ρ̇σ̇DµHµρ̇σ̇ + Dµ̇H1̇2̇3̇ + g2ǫρ̇µ̇τ̇{Xi,X ρ̇,Dτ̇X

i}

+
g4

2
{Xi,Xj , {Xi,Xj ,X µ̇}} − ig2

2
{ΨΓµ̇J ,X

J ,Ψ}, (A.10)

or, equivalently,

DµHµρ̇σ̇ + Dµ̇Hµ̇ρ̇σ̇ = gJ ρ̇σ̇, (A.11)
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where the current is given in the text.

For the variation of the gauge field bλµ̇, we obtain

δSX = −g
∫
d3x〈δbλµ̇{XI ,DλX

I , yµ̇}〉, (A.12)

δSΨ = − ig
2

∫
d3x〈ΨΓλ{δbλµ̇, y

µ̇,Ψ}〉 = − ig
2

∫
d3x〈δbλµ̇{ΨΓλ,Ψ, yµ̇}〉, (A.13)

δSCS = −1

2

∫
d3x〈ǫλµνδbλµ̇F

µ̇
µν〉. (A.14)

The equation of motion for bλµ̇ is

1

2
ǫλµνF µ̇

µν + g{XI ,DλX
I , yµ̇} +

ig

2
{ΨΓλ,Ψ, yµ̇} = 0. (A.15)

This is not covariant, but we can covariantize this by multiplying g∂µ̇X
ν̇ .

V

2
ǫλµνF µ̇

µν + g2{XI ,DλX
I ,X µ̇} +

ig2

2
{ΨΓλ,Ψ,X µ̇} = 0. (A.16)

By using (4.23) and (A.6), we can rewrite this equation of motion as follows:

D̃ρHρλµ̇ + Dκ̇Hκ̇λµ̇ = gJλµ̇ (A.17)

The Bianchi identity (5.13) is obtained by substituting Φ = X µ̇ to the commutation

relation (4.29). By using the definition of the field strength H, we can rewrite the left

hand side as

[Dλ,Dλ̇
]X µ̇ = δµ̇

λ̇
DλH1̇2̇3̇ −

1

2
ǫµ̇ρ̇σ̇D

λ̇
Hλρ̇σ̇, (A.18)

and the right hand side becomes

g2{H
λν̇λ̇

,X ν̇ ,X µ̇} = ǫν̇µ̇κ̇Dκ̇Hλν̇λ̇
. (A.19)

Combining these, we obtain the Bianchi identity

DλHλ̇ρ̇σ̇ −Dλ̇Hλρ̇σ̇ −Dρ̇Hλσ̇λ̇ −Dσ̇Hλλ̇ρ̇ = 0. (A.20)

This is equivalent to (5.13)
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