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ABSTRACT: We investigate the Bagger-Lambert-Gustavsson model associated with the
Nambu-Poisson algebra as a theory describing a single M5-brane. We argue that the
model is a gauge theory associated with the volume-preserving diffeomorphism in the three-
dimensional internal space. We derive gauge transformations, actions, supersymmetry
transformations, and equations of motions in terms of six-dimensional fields. The equations
of motions are written in gauge-covariant form, and the equations for tensor fields have
manifest self-dual structure. We demonstrate that the double dimensional reduction of the
model reproduces the non-commutative U(1) gauge theory on a D4-brane with a small non-
commutativity parameter. We establish relations between parameters in the BLG model
and those in M-theory. This shows that the model describes an M5-brane in a large C-field
background.
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1. Introduction

Recently, a model of the M5-brane world-volume field theory was constructed [} as a system
of infinitely many M2-branes. The theory of Bagger, Lambert [B] and Gustavsson [J
was used to describe the multiple M2-brane system. In the BLG model, a background
configuration of the M2-brane system corresponds to the choice of a Lie 3-algebra [H], and
the Lie 3-algebra used for the M5-brane is the Nambu-Poisson algebra [ on a 3-manifold
N which appears as the internal space from the M2-branes’ point of view, but it constitutes
the Mb5-brane world-volume together with the M2-brane world-volume.

It was shown [] that at the quadratic order of the Lagrangian, the M5-brane the-
ory contains a self-dual two-form gauge field, in addition to the scalars corresponding to
fluctuations of the M5-brane in the transverse directions, as well as their fermionic super-
partners. To the order that was computed, this M5-brane is different from, but compatible
with previous formulations of the M5-brane theory [, [{. In [[] , higher order terms of
the Lagrangian were not considered, and a truncation was applied as a short-cut to show



the desired properties of the M5-brane model. In this paper, we show that actually the
“truncation” did not really remove any physical degrees of freedom. The only physical
components of the gauge field are exactly those surviving the truncation.

By the inclusion of the nonlinear terms, the geometrical structure of the system be-
comes transparent. We show that the gauge transformation defined by the Lie 3-algebra
can be identified as the diffeomorphism of N which preserve its volume 3-form. The gauge
potential associated with this symmetry can be identified with two-form gauge field b,,;, (an
index p for the world-volume and another  for the internal space N') which is a particu-
lar combination of the Bagger-Lambert gauge field A,4,. We show that only a particular
combination of A, is relevant to define the gauge symmetry, the action and the super-
symmetry. We note that the internal space N’ may be regarded as the fiber on the three
dimensional membrane world-volume M in a sense.

The second characteristic feature of the system is that not only the covariant derivative
defined by the gauge potential b,,; is covariant, the triplet commutator {X i XY ®} is also
covariant. This follows from the fundamental identity of the Nambu-Poisson structure.
From this combination, we obtain the second two-form field b;; by which we can define
the covariant derivative in the fiber direction N. By combining two covariant derivatives,
one obtains various six dimensional field strengths associated with b, b

The BLG action and the equations of motion are rewritten in terms of these fields.
The equations of motion for the tensor field are written in a manifestly gauge-covariant
form and combined with the Bianchi identity into a self-dual form.

We organize the paper as follows. In section [, we derive the BLG gauge symmetry
associated with the Nambu-Poisson bracket and identify the gauge fields b, b;; from the
gauge field 4,4, and the scalar field X . In particular we identify the gauge transformation
as the volume-preserving diffeomorphism of V. In section | we derive two types of covariant
derivatives from two-form gauge fields and the corresponding field strengths. The BLG
action is then rewritten in terms of these fields and we derive the equation of motion. As
mentioned, it is identical to the equation for self-dual field strength with the source terms
associated with other fields. In section f|, we derive the supersymmetry transformation of
the six dimensional fields.

In [§], the connection with M5 brane was used to provide the geometrical origin of extra
generators in the construction of Lie 3-algebra which contains arbitrary Lie algebra. In sec-
tion [l we provide a detailed explanation of the derivation of D4 action from BLG model by
the double dimensional reduction. Here the volume-preserving diffeomorphism is replaced
by the area-preserving diffeomorphism. By comparing the obtained D4-brane action to the
known result, we find explicit relations between parameters in the BLG model and those
in M-theory (the Planck scale and the magnitude of the background C-field.) This clearly
indicates that the BLG model well describes an M5-brane in a large C-field background.

In section ], we give a few conjectural arguments which may be helpful to understand
the geometrical nature of M5 brane in the future. First, in section [] we point out that the
Mb5-brane theory we obtained may be interpreted as a dynamical theory for the Nambu-
Poisson structure. In this sense it is analogous to the Kodaira-Spencer theory [f for the
complex structure of a Calabi-Yau manifold.



The last section is devoted to additional remarks and speculations.
For other recent developments of the BLG model, see [[L(]].

2. Review of BLG model

Lie 3-algebra. The novelty of the BLG model is that it integrates a novel symmetry
defined by Lie 3-algebra with supersymmetry. The Lie 3-algebra is defined by an antisym-
metric trilinear product, called Nambu bracket, which will be represented by the bracket
{*,%,%}. We denote the basis of the algebra be T*. The consistency condition of Lie
3-algebra is that it must satisfy the so-called fundamental identity:

{1, 7° {T°, 7", T°}} = ({T*,7°, T}, T, T°}
+{T°, {17, T, T, T°} 4+ {T°, 7% {T%,T", T¢}}. (2.1)

It is often convenient to define the structure constant f*¢; by
{12, T, T°} = fobe, 14, (2.2)
For the construction of an action we need an invariant metric
heb = (1, T?) (2.3)
which satisfies,
{1, 7,7}, T + (T, {T°, 7", T%}) = 0. (2.4)

With the Lie 3-algebra, various fields in BLG model which are symbolically written as
¢ =, 0aT? transform infinitesimally as

b= A{T% T ¢}, or 0ada=AafPath (2:5)
a,b

for the gauge parameter Ay. The fundamental identity implies that this transformation
closes in the following sense,

[51\1 ) 5A2]¢ = 5[A17A2}¢7 [Alv A2]ab = A1d6A2cbfdeca + A1d6A2acfdecb . (26)
As a result of (P-4), the metric (.3) must also be invariant under the symmetry (R.5),

(001, P2) + (¢1,00¢2) = 0. (2.7)

The BLG model, whose action is constructed with the structure constant and the invariant
metric, is a gauge theory associated with this symmetry.



Bagger-Lambert action. With our notation, the action of the BLG model is given by

S = Sx + Sy + Scs + Sint + Spot (2.8)

where
Sy = —% /M Bz(D, X", D'XT), (2.9)
Spot = —% Md3x<{Xf,XJ,XK},{XI,XJ,XK}>, (2.10)

1 1

SCS = /M dgl'e}uj)\ (5 fadeAuabal/A)\cd + ngdagfefgbAuabAuch)\ef> ) (211)
Sy = l/ Pz (¥,T#D, W), (2.12)

2 Jm
St = 1 [ 0@ (X X, 0)), (2.13)

4 Jm

where the covariant derivatives are

D X! =08,x! — frd A X5, DV, =08,V — fd A0, (2.14)

We denote the world-volume of the membrane as M and its coordinate as z* (u =0, 1,2).
The supersymmetry transformation parameter € and the fermion ¥ belong to 8, and 8. rep-
resentations, respectively, of the SO(8) R-symmetry, and are represented as 32 component
spinors satisfying

[HPe = 4etPe,  THPip = —elPe). (2.15)

This Lagrangian has a gauge symmetry associated with the 3-algebra,
5AX£ - bedaAchéa 5A\I/a - bedaAbc\I’m 5AA,uab - DuAaba (216)

where
D,uAab = 8,LLAab - deeaAucheb + deebAuchea' (217)

The Bagger-Lambert action has the maximal (N = 8) SUSY in d = 3,

6XT = jerly, (2.18)
1

60 = D, X' e — 5 {XT, X7, XK} 17K, (2.19)

6A,b, = iel, T rXxIw,fed, Al = P Aua. (2.20)

3. Nambu-Poisson bracket and promotion of 3d fields to 6d

Nambu-Poisson bracket as Lie 3-algebra. For the construction of M5-brane, we
introduce an “internal” three-manifold N and use the Nambu-Poisson bracket

{F.9:hbnp = > PPNy)0; 05,905k (3.1)

LA



on N as a realization of three-algebra. Here y# (i = 1,2,3) is the local coordinate on
N. For literatures on the Nambu-Poisson bracket, see for example [[L1], [[J]. One of the
most important properties of the Nambu-Poisson bracket is that it satisfy the analog of
the fundamental identity for arbitrary functions f; (i = 1,...,5) on N,

{1, fo A f3s fa, fsiwpne= {{f1, f2, f3}np, fa, f5)np
H{f3, {f1, f2, faine, fsine+{f3, f1, { f1, f2, f3}npinp. (3.2)

This gives a very severe constraint on the coefficient P* ’.\(y). Actually it is known that
by the suitable choice of the local coordinates, it can be reduced to the Jacobian,

Of g Oh
— iy 9199 O
{f797 h}NP € 8y“ 8y'j 8yp

This property is referred to as the “decomposability” in the literature [[J]. By using

(3.3)

this fact, we can use (B.J) in the following without losing generality. We also note that
the dimension of the internal manifold A is essentially restricted to 3 because of the
decomposability. If we choose the basis of functions on N as x*(y) (e = 1,2,3,...) and
write the Nambu-Poisson bracket as a Lie 3-algebra,

{Xa7 Xb7 XC}NP = Z fabcdxd 9 (34)

d
eq. (B-3) implies that the structure constant £, here satisfies the fundamental identity.
The integration over the y-space can be used to define the invariant metric,

1
19) = 5 [ Pufwo). (35
9° IN
It is obvious that this satisfies (R.4). We define
hab = <Xa7 Xb>7 hab = (h_l)ab . (36)

Because we have already fixed the scale of 3" at (B.3), we cannot in general remove the
coefficient g from the metric (B.§). As we will show later, however, if the internal space
is N = R?, it is possible to set this coupling at an arbitrary value by an appropreate
re-scaling of variables.

Except for the trivial case (V' = R?), we have to cover A/ by local patches and the
coordinates y* are the local coordinates on each patch. If we need to go to the different
patch where the local coordinates are 3/, the coordinate transformation between y and 7/
(say y'* = f#(y)) should keep the Nambu-Poisson bracket (B-J). It implies that

{r'.r2ry=1. (3.7)
Namely f#(y) should be the volume-preserving diffeomorphism. As we will see, the gauge
symmetry of the BLG model for this choice of Lie 3-algebra is the volume-preserving
diffeomorphism of N which is very natural in this set-up.

We note that we do not need the metric in y” space. For the definition of the theory
we only need to specify a volume form in A/. The gauge symmetry associated with the
volume-preserving diffeomorphism is kept not by the metric but the various components of
the self-dual two-form field which comes out from A,,, and X £ (longitudinal components
of X) as we will see.



Definition of 6 dim fields. By combining the basis of C'(N), we can treat X/ (x) and
U, (z) as six-dimensional local fields

X (a,y) =D X)), ¥lz,y) =) Ta(z)x (). (38)

Similarly, the gauge field A‘}\b can be regarded as a bi-local field:

Ax(z,y.9) = AL (@)X ()X (). (3.9)

The existence of such a bi-local field does not mean the theory is non-local. Let us expand
it with respect to Ay” = ¢/ — y* as

1 S
Ax(z,y,y') = ax(z,y) + bau(z, y) Ay* + §CW($, YAy Ay 4 - (3.10)

Because Ayq, always appears in the action in the form f%%, Ay, the field Ax(y,y') is
highly redundant, and only the component

(3.11)

0
b)\;l(ﬂf, y) = WA)\(:Ev Y, y/)
y'=y

contributes to the action.! For example, the covariant derivative (B.14) of BLG model is
rewritten for our case as,

Dy X! (z,y) = (X" (x) — gf"u Are X5 (2))x* (v)

iy O2AN(T, Y, Y) OX1(x,y)
_ 1 17773 AT, Y, Y Y
8)\X (:Evy) ge ayuay/y — ayp
= 8)\XI(:E7y) - geuyp(aub)\l/(xay))(aﬁXI(:Evy))
= X — g{bas,v", X'} (3.12)

The covariant derivative for the fermion field is similarly,
DyU(z,y) = 0V (w,y) — 9P (ubrs (,4)) (93 (2,y)) = MY — g{brs,y”, ¥} . (3.13)

Longitudinal fields. In [}, this theory written in terms of fields on six dimensions is
identified with the theory describing a single M5-brane. At this point, only the x* part of
the metric g, = 1), is defined, and we still have SO(8) global symmetry, which is different
from the SO(5) symmetry expected in the M5-brane theory.

This is quite similar to the situation in which we consider the D-brane Born-Infeld
action. The Born-Infeld Dp-brane action of ten-dimensional superstring theory possesses
SO(1,9) Lorentz symmetry regardress of the world-volume dimension p+ 1. The rotational
symmetry is reduced to SO(9 — p) for the transverse directions only after fixing the general
coordinate transformation symmetry on the world-volume with the static gauge condition?

XH(o) = o (3.14)

In it was treated as a trick (or an approximation by neglecting the irrelevant parts) to derive M5
action. However, it turned out that this is actually the exact statement.

2Turning on a background field such as the B-field will of course also break the global symmetry. For
the discussion here we are treating the background fields as covariant dynamical fields.



This gauge fixing breaks the global symmetry from SO(1,9) to SO(9 — p), and at the same
time the world-volume metric is induced from the target space metric through (B.14).

We can interpret the six-dimensional theory we are considering here as a theory ob-
tained from an SO(1,10) symmetric covariant theory by taking a partial static gauge for
three among six world-volume coordinates. As we mentioned above, however, we do not
have full diffeomorphism in the y” space. The action is invariant only under volume-
preserving diffeomorphism. This implies that we cannot completely fix the fields X#, and
there are remaining physical degrees of freedom. For this reason, we should loosen the
static gauge condition as [Iﬂ]

X, y) =y + 0" (2,y),  bus = eunph’ (3.15)

As was shown in [, the tensor field by is identified with a part of the 2-form gauge field
on a Mb-brane.

Comments on the coupling constant. In the case of ordinary Yang-Mills theories,
there are two widely-used conventions for coupling constants and normalization of gauge
fields. One way is to normalize a gauge field by the canonical kinetic term —(1 /4)F3V
and put the coupling constant in the covariant derivative D = d — igA. The other choice
is to define the covariant derivative D = d — iA without using the coupling constant and
instead put 1/g? in front of the kinetic term of the gauge field. Similarly, there are different
conventions for coupling constant in the case of the BL theory, too. In the above, we put
the coupling constant g in the definition of the metric (B.). This corresponds to the second
convention we mentioned above. We can move the coupling dependence from the overall
factor to the interaction terms by re-scaling the fields

X' —eX!, W —cW, by, — chy (3.16)

with ¢ = ¢g. In general, as ordinary Yang-Mills theories, we cannot remove the coupling
constant completely from the action.

If the internal space N is R?, however, we have an extra degree of freedom for re-
scaling, and it is in fact possible to the coupling constant from the action. Let us consider
the following re-scaling of variables.

X = BX O B, b — M, Yyt YR (3.17)

This variable change is associated with an outer automorphism of the algebra, and does
not change the relative coefficients in the action. The only change in the action is the
overall factor. We can thus absorb the coupling constant by (B.17), and this implies that
the six-dimensional theory does not have any coupling constant.

We can adopt an elegant convention in which no coupling constant appears. However,
we adopt a different convention below. Because we interpret the six-dimensional theory as
a theory of an M5-brane, we would like to regard the scalar field X' as the coordinates
of the target space with mass dimension —1. We also give the meaning to the variables
y" as the world-volume coordinates, which also have mass dimension —1. We choose the



parametrization in the y# space so that the linear part of the six-dimensional action is
invariant under Lorentz transformations in the (z*,y") space. After fixing the scale of X!
and y# in this way, we can no longer use the two re-scalings (B.16) and (B.17) to change the

coupling constant and overall coefficient of the action. These two parameters have physical
meaning now.

In the following, in order to express the coupling constant dependence of each term in
the action clearly, we separate the coupling constant g from the structure constant. We
also introduce an overall coefficient Ty, which is regarded as an effective tension of the M5-
brane. This plays an important role in the parameter matching in section [, but we will
omit this factor in section [, section [, and section f| for simplicity because it is irrelevant
to the analysis in these sections.

4. Gauge symmetry of M5 from Lie 3-algebra

Gauge transformation. The gauge transformations of the scalar fields X' and fermion
fields ¥ are given by

A X (z,y) = ghap(x) [ X (2)x (y)
= gAap(2){x% X", X1} = g(0ny?)0; X (2, y),

5 (z,y) = ghapr(z){x* X", U} = g(629°)0; ¥ (2, y), (4.1)
where we used
£ = X xa) s D X Wxa) = 6Py — ). (4.2)
Sayt is defined as
oyt = MO (2, y), (4.3)

Aa(x,y) = O M@y, 0 )y=y . Ay, y) = Aap(@)x W)X ).

We note that although the parameter of a gauge transformation may be expressed as a
bi-local function ]X(a:,y,y’ ), the gauge transformation induced by it depends only on its
component Ay (x,y) which is local in N. It comes from the fact that the gauge transfor-
mation by Ay is always defined through the combination f%¢;A,.

The same argument can be applied to the gauge field A,(z,y,v'). As we already
mentioned, since it appears only through the combination A, f abe | the local field bu 5 (z,y)
defined as (B.11]) shows up in the action.

The transformation ([L.1) may be regarded as the infinitesimal reparametrization

Y =yt — goy. (4.5)

Since 8ﬂ5y” = 0, it represents the volume-preserving diffeomorphism. Since the symmetry
is local on M, the gauge parameter is an arbitrary function of z. So what we have obtained
is a gauge theory on M whose gauge group is the volume-preserving diffeomorphism of V.



In this sense, the world-volume of M5 brane may be regarded as the vector bundle N' — M
but the gauge transformation on each fiber is not merely the linear transformation but the
diffeomorphism on the fiber which preserves the volume form

w= aiyi A dy2 A dy3 . (4.6)

As we mentioned in the previous section, among eight scalar fields X, the last five

components X? are treated as scalar fields representing the transverse fluctuations of the
M5-brane. The other three X# (longitudinal field) are rewritten as as

. fo 1 ..:
Xi(y) = y; 4 gem%(y). (4.7)

We chose the coefficients so that we obtain Lorentz invariant kinetic terms in the six-
dimensional action. The gauge transformation of by, can be derived from (f.1)) and (f.7) as

5Ab,;>'\(y) = &%A)'\ - 8)'\1\;; + g(éAy"’)apb%(y). (4.8)

The gauge transformation of the gauge field Ay (z,y,y’) is given by dpAx(z,y,y) =
DAJNX(x, y,y'). The covariant derivative of a bi-local field is defined by tensoring the covari-
ant derivative (B.19) for a local field, and we obtain

DaA(y,y') = O\A W, Y) — g€ P10bas (W) Ip Ay, y') + ibas ()M (y,1/)]. (4.9)
From this we can extract the transformation law of the component field by
orbas = 0p0aAN(Y, Y )|y =y = OaAs — 905€n — 9Ogebrs, (4.10)
where 04.b)s is the coordinate transformation in y-space
Sgcbrs = =AY Osbrs — (0508y )bas, (4.11)

and &, is defined by
Er = Eﬂl;p(aﬂb)\,;Ap' + b)\ﬂa,)Ap'). (4.12)

In addition to these gauge transformations derived from (R.14)) and (2.17), there is an

additional gauge transformation which acts only on the field by;. As we can see in (8.19),
by, appears in the covariant derivative in the form of the rotation in the y" space. This
means that D,® is invariant under

Obxy = —0pAx. (4.13)
We can easily check that the Chern-Simons term is also invariant under this transformation,
and thus ([.I3) is also a gauge symmetry of the theory.
Now we summarize the gauge transformation of the six-dimensional theory.
SAX" = g(0ayP)9s X7,
oAV = g(5Ayp)8p\If,
6Ab/a)\ = a,:@Aj\ — 8)'\A,'i + g(éAy"’)aprx,
Iabrs = O\As — OsA) — gOgcbrs-

We absorbed &5 in ({.10) into the definition of the parameter Ay. In the weak coupling
limit ¢ — 0, we obtain the standard gauge transformation on an M5-brane.



Covariant derivatives in 6 dim. An intriguing feature of our six dimensional model
is that one may define the covariant derivative in the fiber direction.

By using the fundamental identity, it is easy to show that if 1, 5, and 3 are covariant
fields (such as X! or ¥), not only D, ®; but {®, Py, P3} are also covariant because of the
fundamental identity,

51\{(1)1, <I>2, <I>3} = {5/\(1)1, <I>2, @3} + {(I)l, 5Aq)2, @3} + {<I>1, <I>2, 5/\@3} . (418)

It implies that the following combination defines the “covariant” derivative along the fiber
direction,

2
_ 9 oy
Dﬂq) = EGUVP{X 7Xp7q)}
: . 2 o
= 6;}1) + g(@AbA8ﬂ<I> — 8ﬂbA6A<I>) + %Eﬂ,'jp'{bu, bp, q)}. (4.19)
Together with (B.13), which we repeat here again,

D,® = D,® = 9,® — g{bus,y", P}, (4.20)

we have a set of covariant derivatives on M5 world-volume.
These covariant derivatives possess the following important properties.

e Leibniz rule:

Dﬁ{q>17 (1)27 (1)3} = {Dﬁq)lv q>27 @3} + {(1)17 DH(I)% (1)3} + {q>17 (1)27 Dﬁq>3}' (421)
e Integration by parts:

/ dPrd’y® DyPy = — / d*xd®y(D®1)Po. (4.22)

Here D, (0 =0,1,...,5) represents D, and D,.

Field strength. As special cases of these covariant derivatives, we define the following
field strengths of the tensor field.

Houwr = EW»'\D)\X)‘

= Hyp — g€ (0sbr:)0bjuis (4.23)
Higy = ¢H{X', X%, X7} - ;v

= Higs + g(aub"‘@vb” — 0ub" ") + gP{b1, 07, b, (4.24)

where V is the “induced volume”

V=g {x! x2 X%}, (4.25)

— 10 —



and H is the linear part of the field strength

Hypy = Oxbjw — Opbyiy + Opbyg, (4.26)
Hj\ﬂf/ = 8}\1),1,) + 8,1[)1»'\ + 8,;%.1. (4.27)
‘H are covariantly transformed under the gauge transformation.

Just like the case of ordinary gauge theories, the field strength H arises in the com-

mutator of the covariant derivatives defined above:

Dy, Ds]® = gepus{Hiss, X7, @}, (4.28)
[D)nD)\]q) = 92{H)\,)j\7XV7q)}7 (429)
[D,,D,]® = —%ewpﬁwm@, (4.30)

where the dual field strength H is defined by

ﬁAp’% = %EAP&UW}IHU[L,‘,, ﬁ;wp = éeul/p/lﬂp'Hﬂl_/p‘ (4.31)

5. M5 action and equation of motion

We rewrite the various parts of the Bagger-Lambert action in terms of the six dimensional
fields and their covariant derivatives,

1 . 1 : 1 1
Sx + Spot = /d3$ <_§(DHXZ)2 - §(DAXZ)2 - ZHiup - EHEW

_L_9_4{Xﬂ X Xj}2_f{X" X7, xky2 (5.1)
2g2 4 ) 9 12 b b b
S + Sipy = / B <%§rﬂpﬂ + %@rf’riégppm
ig2_ . . Zg2_ . .
+ T { X, X 0 + T\I/Fij{XZ,XJ,\I/}> . (52)

The scalar kinetic term is manifestly Lorentz symmetric up to the different structure inside
the covariant derivatives D, and D;. The Chern-Simons term cannot be rewritten in
manifestly gauge-covariant form.

1 .
SCS = /d3x6‘uy)‘ <—§ewj>\8ﬂbw;&,b»\
20,567 0 brg (O3B — 51,5 )
6 1Ovr o UAp\ U\t T A
1
_ / P / A <_§dbu A Dby — %(*dbu) A (xdby) A (*dbﬂ) . (5.3)
Yy

In the second expression we treat b, as a one-form field b, = bwdy” in the y-space.
However, the equation of motion which is derived from these actions turns out to be
manifestly gauge-covariant.

— 11 -



Comments on fermion action. In the fermion kinetic terms in (f.J), only the
SO(1,2) x SO(3) subgroup of the Lorentz symmetry is manifest due to the existence of
I'j53 in one of two terms. We can remove this unwanted factor from the kinetic term by
the unitary transformation

UV=UU U=UV, (5.4)
where U is the matrix
m 1
U = exp <—ZP123) = %(1 = Tis3)- (5.5)

The SUSY parameter ¢ is also transformed in the same way. Note that both ¥ and ¥
are transformed by U. This is consistent with the Dirac conjugation. As the result of the
unitary transformation, the fermion terms in the action become

Sy + Sint = / d*x <%W'F“DM\P’ + %@’r@pxxf’
ig2 -/ L i / Zg2 -/ i j /
After the unitary transformation, the condition (2.15) becomes the chirality condition in

six dimension,
Id =¢, 170 = -V (5.7)

where the chirality matrix I'7 is defined by
PHvPri2S = et (5.8)

This means that the supersymmetry realized in this theory is the chiral NV = (2,0) super-
symmetry, which is the same as the supersymmetry on an M5-brane.

Equations of motion. It is easy to obtain the equations of motion for the scalar fields
and fermion field as

_ 2 ] 2 vi
0= D2X' + D2X’
4
g (X X7 (X X, XY 4+ (0, xR (0, xR X0
. 2 ) . 2 o )
+%{\I//FM,X“, ')+ %{w’rijrigg,xa v}, (5.9)
0 = THD, U + TPD, U + g°T {XF, X1 W'} — %rijriég{xaxa ') (5.10)

The equations of motion of gauge fields b,,, and b, and the Bianchi identity are combined
into the self-dual form:

DyHM 4 DyHM = g, (5.11)
DyHM 4 DyHM = g i, (5.12)
DyHMY 4+ DyHM = 0. (5.13)
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The first two are equations of motion obtained from the action, while the last one is a
Bianchi identity derived from the commutation relation (4.30). The currents on the right
hand sides are given by

.. . . . 3 P . . . . .
JP? = g({ X", Ds X", XP} — (p—0)) — J PORIX" XI { X', X7, XH}}

?E
19, I s 5 1 . . U o iyl
+5({\II I ,XP’ v } - (p A J)) + 5€p M{\II F[Li’X a4 }7 (514)
T = g{X' D, X" X"} + %{W'F“,\I//,X”}. (5.15)

The self-dual tensor field H, chiral fermion field ¥, and the five scalar fields X* form a
tensor multiplet of N = (2, 0) supersymmetry [[[3], which is the same as the field contents
on an Mb-brane.

6. Supersymmetry

In this section we rewrite the supersymmetry transformations (P.1§)-(R.2() in terms of the
six-dimensional covariant derivatives and field strength. The transformation law (R.2() of
the gauge field A4, with coupling constant inderted is

AL, =igel, D1 X1, fe®,. (6.1)
We cannot determine uniquely the transformation law of the component field b,,;, from this

equation because of the existence of the gauge transformation ([f.13), which acts only on
b In fact, the transformation (B.1)) only gives

8 ("7 0brs0pf () = igelALH{X ", W, £(y)}, (6:2)
where f(y) is an arbitrary function of y#. One possible choice for §b,,; is
Obys = ig(el T, ¥) 0, X7 (6.3)

We can easily check that this transformation law reproduces (f.9).
In some situations an explicit appearance of b, is not necessary, but all we need is
Bu” = e"“"p'a,-,bup, which satisfies the constraint 8ﬂBu"‘ = 0. The SUSY transformation for

B," is uniquely determined from (f.J) as
§B,* = igel T 19, X 70,0, (6.4)
and it is obvious that the constraint is SUSY invariant, i.e.
8(0uB,") = 0. (6.5)
The transformation laws rewritten in terms of the six-dimensional notation are
56X = i@, (6.6)
5V = D, X'THT'e + Dy X'THT"

1 y 1
—5 Mt — <§ + ng) Tjgs€

2 2 L.
- X XD 4 S, X7, X e, (6.7)
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(51)/11) = —Z‘(EIP/W\I’,), (68)
by = —iV (€T, T V') +ig(el,[i[530") 0, X"

A peculiar property of this SUSY transformation is that the perturbative vacuum (the
configuration with all fields vanishing) is not invariant under this transformation due to the
term in §U’ proportional to 1/g. We can naturally interpret this term as a contribution of
the background C-field. In the M5-brane action coupled to background fields, the self-dual
field strength is defined by H = db+ C (up to coefficients depending on conventions). The
inclusion of C-field in the field strength is required by the invariance of the action under
C-field gauge transformations. The shift of the field strength H;s3 by (1/g) in the action
as well as in the SUSY transformation suggests that the relation C' o< g~! between the
Nambu-Poisson structure and the C-field background. This statement of course depends
on the normalization of the gauge field C. For more detail about this relation, see section [q,
where we derive the precise form of this relation including the numerical coeflicients.

In fact, M5-brane in a constant C-field background is still 1/2 BPS. The effect of the
C-field is changing which half of 32 supersymmetries remain unbroken. We can find this
phenomenon in our six-dimensional theory. In addition to 16 supersymmetries we described
above, the theory has 16 non-linear fermionic symmetries 6, which shift the fermion by
a constant spinor

SO =, s0D x7 = 50Dy, = 5D, = 0. (6.10)

The action is invariant under this transformation because constant functions in y* space are
in the center of the 3-algebra. The perturbative vacuum is invariant under the combination
of two fermionic symmetries

1 (nl)
551 — =6, 6.11
€ ( )

In the weak coupling limit ¢ — 0, the transformation laws for this combined symmetry
agree with those of an N = (2,0) tensor multiplet [[4].

6X' = @V, (6.12)
. ) 1

oV = 9, X'THT"e — EHMPME’, (6.13)

Sbuy = —i(€T ') (6.14)

We obtained the transformation (6.14) only for pv = i and piz. To obtain the transfor-
mation law of the b, components, we first compute the transformation of H,;; and H,;,
by using the transformation law of b,; and b,,. Because the field strength is self-dual, it
also gives 5ﬁuyp~ and (5ﬁuyp. The equations of motion (f.11)) and (p.19) are the Bianchi
identities as well for these components of field strength. If we can solve these Bianchi
identities on shell and express them by using b,,, we can extract the transformation law
of by, from (57'~£Wp~ and 5ﬁuup. In the free field limit g = 0, we can easily carry out this
procedure and obtain (6.14)) for by, .
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7. Derivation of D4 action from M5

In this section we demonstrate that the double dimensional reduction of the six-dimensional
theory correctly reproduces the action of non-commutative U(1) gauge theory, which is
realized on a D4-brane in a B-field background.

We here recover the overall factor Tg in the front of the action. This has mass dimension
6 and can be regarded as the tension of the five-brane, while the coupling constant g is a
dimensionless parameter. We should note that this tension T is not necessarily the same
as the usual M5-brane tension Ty15, because it may be corrected by the background C-field.
We will later determine the parameters g and Tg by comparing the five dimensional action
obtained by the douple dimensional reduction of the six-dimensional theory to the non-
commutative U(1) action realized on a D4-brane in a B-field background in type IIA theory.
Once we obtain the expression for g and 7§ in terms of type IIA parameters, it will be easy
to rewrite them in terms of the M-theory Planck scale and the magnitude of the C-field.

The double dimensional reduction means that we wrap one leg of the M5-brane on
a compactified dimension, so that through Kaluza-Klein reduction we get one fewer di-
mension for both the target space and the world-volume. Let us choose the compactified
dimension to be X3. In the double dimensional reduction, we suppress y?’—dependence of
all fields except X 3. We have

X3 = gy?’, b3 = 0. (7.1)

We used a gauge symmetry generated by A; and Aj to set b = 0. We impose the
periodicity condition _ .
X3~ X3 4 L. (7.2)

The relation ([7.1) and ([.2) implies that the compactification period of the coordinate y3
is gL11, and thus, the overall factor of the five dimensional theory becomes gL11T§.

Let us now first carry out the dimensional reduction for the bosonic terms in the action.
Since all the fields except X 3 have no dependence on yg, we set J; = 0 unless it acts on
X3. We will use the notation that indices &, B, ... take values in {1, Q}., and a,b,... take
values in {0,1,2,1,2}. The antisymmetrized tensor ¢*? is defined as €% = €43,

Expecting that we will obtain a gauge field theory on a D4-brane, let us define the
gauge potentials
ay = bug dd = bd3' (73)

The covariant derivatives become

D, X% = P 5 D,X* =G, D,X'=D,X' (7.4)
where Ely, a,, and D, are defined by
Foy = Oaty, — Obliq + g{da, v}, (7.5)
a, = edgﬁdbug,
D,® = 9,® + g{a,, ®}. (7.7)
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The Poisson bracket {-,-} is defined as the reduction of the Nambu-Poisson bracket

{f,9y = {o*, f.9). (7.8)

We note that the components b i only show up through the form a, in D4 action. Thus
we find that, after double dimensional reduction, the scalar kinetic term in the BLG La-
grangian become

Ts

LT ) o
5 | (DX = —91% /dga:dzy (ai + 2+ (DMX’)2> . (79

The Nambu-Poisson brackets which appear in the potential terms of the BLG action are

1 . 1

(X1 x2 X3} = g—2FiQ + ped (7.10)
; . ) 1 .4 )
3 « i aB . vi
(X3 X% X'} = 72 DX, (7.11)
(x5, X1 x7) = 1{xi x9y. (7.12)
g

The potential term becomes
T
gy [ @l X X
3. 12 1 (x 1\* 1 2 92 i vil2
=gL1Ts | d°zd?y 3 Fis —|—§ — §(DQX )* — Z{X , X7 (7.13)

Upon integration over the base space and removing total derivatives, we can replace
(Fiy+1/9)* by F} + 1/g%

It is also straightforward to show that the Chern-Simons term (p.3) gets simplified
considerably as

LT .
—%/d3xd2ye“”AFuydx. (7.14)

Here again the action depends on buﬁ only through a,. As the action depends on the field
a, only algebraically (namely without derivative), we can integrate it out. There are only
two terms involving a, and by completing square, we find that the effect of integrating out
ay is to replace all terms involving a, by

gL11Tg -
- / dPad*yFy,. (7.15)

The fermion part can be evaluated similarly. The covariant derivatives and bracket are

"D,V = I"(0,% + g{a,, ¥'}) :=T"D, V¥, (7.16)

1 . .
5PU{XI,XJ,fo’} = Talyg3 D0 + T3 { X7, W'} (7.17)
D' = 0,V + g{ag, ¥'}. (7.18)
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It is quite remarkable that, after collecting all the kinetic, potential and Chern-Simons
temrs, the 441 dimensional Lorentz invariance is restored (up to the breaking by the
non-commutativity). The sum of all these terms is simply

1~ . 1. T 1
LTy | &xd?y |—=(D,XH? — ZF3 — 2 (X X722 _—_
+% (@’T“baxy” + gU'T{X", \If”}ﬂ : (7.19)

We performed the unitary transformation ¥’ = (1/v/2)(I'; + I'")¥” to obtain the correct
chirality condition I';¥” = —¥” for the gaugino on the D4-brane. (Nore that 3 is now the
“eleventh” direction and I'y is the chirality matrix in IIA theory.)

Let us compare the action ([.19) with the known result [L§, ] for a D4-brane in a
B-field background, and match the parameters in this theory and those in type IIA string
theory. The non-commutative gauge theory on D4-brane in a B-field background is de-
scribed with the Moyal product *, and the corresponding commutator, the so-called Moyal
bracket [, |soyal, defined by

igij 0 _0_
flx)xglx) = e*" 270 f(a + §)g(x + ()le=c=o, (7.20)
o Otogas = £ #9 — g% f = 099,10;9 + O(6%). (7.21)

The non-commutativity parameter % has the dimension of (length)?. Because the ac-
tion (F19) includes only finite powers of derivatives, it should be compared to the weak
coupling limit § — 0 of the non-commutative gauge theory. These two match if we truncate
the Moyal bracket into the Poisson bracket by

[f) g]MOyal - Ti{fmg}v (722)
str

where we turn on the non-commutativity in the 1-2 directions by setting

6

2 _
0 =7
str

gre = g = 0. (7.23)

Note that 0 is defined as a dimensionless parameter. In the small 6 limit, the bosonic part
of the action of the non-commutative U(1) gauge theory on a D4-brane is given by [[[5, [[f]

1
4T’str

1
202 |7

, 2
S = % /d%cfy [_;Daxlﬁ — 57— Far — HZ{XZ,XJ}2 - (7.24)

in the open string frame. The world-volume coordinate y® in the open string frame is
related to the target space coordinates X¢ by

X& = 2y, (7.25)
The covariant derivative and the field strength are

. . i . 0
Do X" =0, X" + T—{AG,XZ}, Fap = 044y — OpAq + —{Aa, Ap}. (7.26)

str Tstr
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We normalize the gauge field A, so that it couples to the string endpoints by charge 1
through the boundary coupling S = faFl A of the fundamental string world-sheet, and
this gauge field has mass dimension 1. In the weak coupling limit, the non-commutativity
parameter 6 is related to the background B-field by

. . TS r . .
B =Ty, 0dX' A dX? = Ttdyl A dy?. (7.27)

By comparing two actions ([.19) and ([7:24), we obtain the following relations among
parameters:

T
Ty = % (7.28)

g=0. (7.29)

To relate quantities in IIA and M-theory, we use the following relations among tensions of
M-branes and IIA -branes.

Tps = L11Tvs,  Tsr = L11Tp2 = L11T . (7.30)

The relation T]%/IQ = 27T )5 is also useful.

In addition to the agreement of the action through the relations ([.2§) and (7.29), we
can check the consistency in some places.

Firstly, the relation ([[.2]) between the world-volume coordinates and the target space
coordinates can naturally be lifted to the relation ([L.7).

Secondly, the overall factor Tg agrees with the effective tension of M2-branes induced
by the background C-field. The background B-field ([.27) is lifted to the background
three-form field
Tarz

02

(We use the convention in which the gauge fields B and C' couple to the world-volume

Cy = OTyd X A dX2 A dX3 = M2 000 A dy? A dy?. (7.31)

of corresponding branes by charge 1 through the couplings fFl B and sz C.) Each flux
quantum of this background field induces the charge of a single M2-brane on the M5-brane,
and effective M2-brane density in the y-space is #~2Ty2/(27). Thus, if we assume that the
tension of Mb5-brane is dominated by the induced M2-branes, the effective tension becomes
Tz X 07 2Tv2/(2m) = 07 2Tys. This agrees with the overall coefficients Ty given in the
relation ([7.2§).

Finally, the charge of the self-dual strings is consistent with the Dirac’s quantization

condition. From the comparison of the actions we obtain the relation of gauge fields
1

Gy = —— A, 32
a T (7.32)

As we mentioned above, the gauge field A couples to string endpoints by charge 1. By
the correspondence ([(.32) we can determine the strength of the coupling of @ and b to
boundaries of the corresponding branes. The boundary interactions are given by

S = Ty / P b. (7.33)
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To obtain the second equality in ([.33), we used the fact that a string endpoint is lifted to
an M2-brane boundary wrapped on the S* along 3 with period gL11. The coupling (7.39)
shows that the charge of self-dual strings (boundary of M2-branes ending on the M5-brane)
is Q = 0~ 'Ty12. Because the gauge field b is a self-dual field, Q is the electric charge as well
as the magnetic charge of a self-dual string, and it must satisfy the Dirac’s quantization
condition

Q2

?6 g
We can easily check that this relation certainly holds.

2. (7.34)

We can now explain the constant shift in the field strength as follows. The M2-brane
action includes the following coupling to the bulk 3-form field C' and the self-dual 2-form
field b:

Sme = Cs + %/ b. (7.35)
M2 OM2

The gauge invariance of this action requires that under the gauge transformation
§C3 = day, the self-dual field on the M5-brane must transform as 6by = —ag /(0™ Thz).
Thus, the gauge invariant field strength H of the tensor field b should be defined by

0

H=db+——C. (7.36)
T2

Therefore, the background gauge field ([7.31)) shifts the field strength as

H=db+ %dyi Ady? A dy®. (7.37)
This is the same as the constant shift in the definition (f.24) of Hjs3.

Now we have relations between parameters in the BLG theory and those in M-theory.
The D4-brane action obtained by the double dimensional reduction is the weak coupling
(g = 6 — 0) limit of non-commutative U(1) theory because the Moyal bracket is replaced
by the Poisson bracket. The coupling constant is determined by the background C-field,
and the weak coupling means strong C-field background through the relation (.31). Our
Mb5-brane theory is expected to apply better to the limit of large C-field background. This
is also confirmed in the comparison of the five-brane tension. As we mentioned above, the
effective tension Ty is dominated by the tension of M2-branes induced by the background
C-field. This is the case when the background C-field is very large.

For a finite C-field background, we expect that the Nambu-Poisson bracket should be
replaced by a quantum Nambu bracket.

8. Seiberg-Witten map

It was found by Seiberg and Witten [[[] that the gauge symmetry on a noncommmutative
space can be matched with the gauge symmetry on a classical space via the so-called
Seiberg-Witten map

05P(@) = (P + 6,P) — (), (8.1)
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where <i>(<I>) is the field variable, and 55\ the gauge transformation in the noncommutative
gauge theory corresponding to & and J) living on the classical space. The gauge
transformation parameter S\(A, A) in the noncommutative gauge theory is a function of
the gauge potential A and gauge transformation parameter A in the gauge theory on
classical spacetime. The Seiberg-Witten map is found as an infinite expansion of the
noncommutativity parameters.

In this section we find the Seiberg-Witten map connecting the gauge theories on space-
times with and without the Nambu-Poisson structure, corresponding to M5-brane theories
in trivial or constant C-field background. In this section only, we denote all variables in
our Mb5-brane theory by symbols with hats, and those in trivial backgrounds by symbols
without hats. As g — 0, the variables with hats should reduce to those without hats.

In the trivial background, we have the gauge fields b, b,; and gauge transformations

Oabuy = OuNy — Oy, Onabuy = Ouy — O, (8.2)

In the Mb5-brane theory with a C-field background, we have

It will be convenient to use the following variables
IA)‘& = 6;11'/5\[;1»\7 BM[L = 6[“».‘8,)?)#)'\. (85)
instead of IA),-M) and EW' Similarly we define b* and B,ﬂ in the same way. We shall impose

the constraints
B, =0, and 9B, =0 (8.6)

on Blﬂ and B,ﬂ so that the existence of IA)W and by, is guaranteed when the former are
given. The gauge transformations of the new variables are

03b = &'+ g7 Oy, 03B = 9,k + gi” 0, B, — g(855M) B, (8.7)
where .
i = A, A (8.8)
was denoted by dry” above, and it satisfies

Oukt = 0. (8.9)

Analogous to all these equations above, we have the corresponding equations for variables
on a M5-brane in the trivial background. They can be obtained by taking the ¢ — 0 limit as

SAVM = kP, SABL = 0k, K= dPAO,A,. (8.10)
We need two Seiberg-Witten maps b (b) and Eu”(B ,b) satisfying

05" (b) = b(b+ 6ab) — b (D), (8.11)
03B, (B,b) = B,(B + 65B,b+ dzb) — B,M(B,b). (8.12)
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The solutions would be infinite expansions in g. To the first order terms in g, we find the
solution as

b (b) = bl + gb”a,-,bﬂ + gbﬂa,-,b” +0(g%), (8.13)

By (B.b) = B, + g0, B, = S5 0,0, + S0'0,0,07 + 90" B,
— g B, — gapb”ﬁubf‘ + gapbﬂaubv +O(g?), (8.14)
R (k) = K+ gb”amﬂ + g(&;b"’)m” - g(apbﬂ)pf +O(g?). (8.15)

Some of the coefficients here are not completely fixed by the Seiberg-Witten map condi-
tions (B.11)—(B.12), but they are uniquely determined by the requirement that the con-
straint (8.6) is preserved by the Seiberg-Witten map. It should be possible to solve for
higher order terms order by order.

To be complete, let us consider X! and ¥, or anything that transforms like
6 = gl d. (8.16)

The classical counterpart of d has
0P =0. (8.17)

The Seiberg-Witten map condition (B.J]) is easy to solve for this case to obtain the first
order terms, and the solution is

= d + gb"9,® + O(g?). (8.18)

A comment is needed here regarding the map between 4 and x#, which are defined in
terms of the gauge transformation parameters Aﬂ and A;. If one wants to determine the
map between Aﬂ and A, it is necessary to fix the ambiguity in the gauge parameters for a
given gauge transformation. It is obvious that the transformation of the gauge parameters

Ay — A+ 9,6, A, — A, + 0,8, (8.19)
Ay — A+ 9i€, Ay — Ay + 9,8 (8.20)

does not change the gauge transformations (B.2)-(8-4) at all. To avoid this ambiguity in
the gauge transformation parameters, we can use 4" and s” instead, and the existence of
Aﬂ and A, are guaranteed by the constraints (B.9). One can check that the constraint (B.9)
is preserved by the Seiberg-Witten map (B.19).

The ambiguity involved here is in the same form as a gauge transformation of 1-form
gauge fields, and hence we can “gauge fix” the gauge transformation parameters by the
following constraints

A =0,  9uAt =0. (8.21)

(Here we are raising and lowering indices using the metric d;; on N'.) We can solve these
constraints by . _
A = 2915, AP = 2 0my (8.22)

— 21 —



and again we can demand the constraints
ot =0, o = (8.23)
on the parameters /7 and n*, in terms of which we have
PP = —9%h, K= —9%n", (8.24)

where 0% = @18’1 is the Laplace operator on N. This allows us to deduce the Seiberg-Witten
map between 7 and n”, and finally the Seiberg-Witten map for the gauge transformation
parameters can be expressed in the following nonlocal form

AMﬂW—%WWJQW@m+@MMV%%WMHmm (8.25)

9. Interpretations of the M5-brane theory

9.1 As a field theory of the Nambu-Poisson structure

The gauge symmetry of the M5 world-volume theory is the volume-preserving diffeomor-
phism on A. The transformation law for both X* and ¥ are given in the same form

AP = gipy"0,®, (9.1)
where the volume-preserving coordinate transformation
Ay = AN (9.2)

is parametrized by three arbitrary functions A.

In the above we have considered b, and b;; as the gauge fields for the volume-
preserving diffeomorphisms. Here we give a geometrical interpretation to these quantities
in terms of deformations of the Nambu-Poisson structure.

The degrees of freedom corresponding to b, or equivalently b is easy to understand.
It arises in X# (7)), and y# is a longitudinal coordinate on the Ms brane. Thus b cor-
responds to a coordinate transformation on A/, which is not necessarily volume-preserving
because E?,lb” may be nonzero. In fact, one can view b” as a parametrization of the defor-
mations of the Nambu-Poisson structure due to a change of the coordinates

Y = g XH = yP 4 gbt (9.3)

That is,

S5 0 0 0
— NG £ 0. gl : .
{f,9,h} = €0, f 09051 g e 8XﬂfaXygaXAh

While b” is used to parametrize deformations of the Nambu-Poisson structure, infinitesimal

(9.4)

coordinate transformations
b = Syt + goy” Dbl I0 sk (9.5)

which preserve the Nambu-Poisson bracket, should be regarded as gauge transformations
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The other gauge potential b,,, appears in the covariant derivative (}£.2(])
D, =, — gB,"d,, (9.6)

where .
, A
B} =€ Opbu}\. (9.7)
Formally, the expression of the D, suggests that B,ﬂ is the gauge potential and 9, is the
gauge symmetry generator, which also appears in (D.J]). Indeed, instead of defining B,ﬂ

in terms of b,,, one can view B,ﬂ as the fundamental gauge potential, and guarantee the
existence of b, through the constraint

0B, = 0. (9.8)

The gauge field BH” is reminiscent of the gauge field parametrizing complex structure
deformations on a Calabi-Yau 3-manifold in the Kodaira-Spencer theory [g].

Consider a generic 6 dimensional space equipped with a Nambu-Poisson structure. The
decomposability of the Nambu-Poisson bracket implies that locally we can always choose 3
coordinates y# such that the Nambu-Poisson bracket is just the Jacobian factor (B-J). Thus
the Nambu-Poisson structure induces the separation of local coordinates into the two sets
{x#} and {y#}. This is analogous to the situation of a complex manifold, for which there
are holomorphic 2z* and anti-holomorphic 7 coordinates. A deformation of the complex
structure can be described by specifying how the notion of holomorphicity is changed. A
function on the complex manifold is holomorphic if

Of =0 — 0:f =0. (9.9)
When the complex structure is deformed, the anti-holomorphic exterior derivative is
changed )
0 — 0y =dz'D;, (9.10)
where
D; = 9 + A;'0;. (9.11)

The gauge potential A;' parametrizes how much mixing occurs between the holomorphic
and anti-holomorphic coordinates due to the deformation of complex structure. In our
M5-brane theory, BH” plays a similar role as A;’, and the covariant derivative D, can be
viewed as a deformation of the derivative with respect to x*. It should be understood as
a specification of how much the coordinates z* and y” are mixed by a deformation of the
Nambu-Poisson structure. While the Kodaira-Spencer theory [f]] is a dynamical theory of
the complex structure, the M5-brane theory can be understood as a dynamical theory of
the Nambu-Poisson structure.

To be more persuasive, we can make the analogy between the Kodaira-Spencer theory
of complex structure and the M5-brane theory of Nambu-Poisson structure more explicit.
For a Calabi-Yau 3-fold, there is a unique holomorphic (3,0)-form Q = %Qijkdzidzj dz*.
This allows us to impose a constraint on the gauge potential A as

0A" =0 = Q79 Ay, =0, (9.12)
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where
A = (Q-A), i.e. A%jk = QijkA;i. (9.13)

The (3,0)-form € is analogous to the Nambu-Poisson tensor field, which is taken to be
ge"”A by suitably choosing the coordinates y#. If we carry out the substitution

A— B, szk - geﬂz'/).n Zi - y“7 (914)

the constraint (P.13) is precisely the constraint (0.§) which guarantees the existence of by,;.
Furthermore, the Kodaira-Spencer equation [[[7], which is equivalent to the nilpotency
condition of the deformed anti-holomorphic exterior derivative (0.1(), is

0404 =0, <« [D;, Dj] = 0. (9.15)
If we turn off all other fields X*, ¥ and b”, the equation of motion for BH” is
[D,, D] = 0. (9.16)

This is exactly what one obtains from (0.15) via the replacement (9.14)).

To summarize, while b,; and b;; are viewed as the gauge potentials for the gauge
symmetry of coordinate transformations preserving a given Nambu-Poisson structure, B,ﬂ
and b* should be viewed as two types of deformation parameters of the Nambu-Poisson
structure of the M5-brane world-volume. We have b specifying the change of the Nambu-
Poisson structure due to a change of coordinates éy* in A/ (so that the volume form is
changed), and Bu"‘ the change due to a mixing of the two classes of coordinates x# and
y*. The gauge symmetry corresponds to redundant descriptions of deformations of the
Nambu-Poisson structure. The M5-brane theory with a self-dual gauge field can thus be
interpreted as a dynamical theory of the Nambu-Poisson structure.

9.2 As an effective theory in large C-field background

The Mb-brane action obtained from the BL action with the Nambu-Poisson algebra should
be interpreted as the M5-brane theory in a large C-field background. In section [}, we find
this interpretation to be consistent with the properties of the supersymmetry. Furthermore,
in section [], the noncommutative D4-brane action obtained via a double dimensional re-
duction from the M5 theory has g ~ 6. As it is well known that for a D4-brane the
noncommutativity parameter @ is given by B! in the large B-field background, we de-
duce that (with the specific normalization of C-field such that the self-dual field strength
becomes H = db + C)

g~C! (9.17)

in the large C-field background for our M5-brane theory.

In [[l], an analogy was made between the Nambu-Poisson structure on M5-brane and
the Poisson structure on D-branes. For a D-brane in a constant B-field background, the
effective D-brane theory is best described as a noncommutative field theory. In the limit of
both large and small B-field background, the noncommutativity is small and the commu-
tator can be approximated by a Poisson bracket, and the Poisson structure is determined
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by the two-form B-field background. More precisely, the gauge-invariant quantity which
should be used to specify the background is F = B+ F, where F' = dA is the field strength
of a gauge field A in the D-brane world-volume theory. We can fix the gauge so that
the background value of F = B. Then a nontrivial configuration of the gauge field A
corresponds to a change of F, and thus a change of the Poisson structure.

The invariant self-dual 3-form field strength on the Mb5-brane is H = C' 4 db, where b
is the 2-form gauge potential on the M5-brane. The Nambu-Poisson structure determined
by a given background H = C' is therefore deformed by turning on b, while a gauge
transformations of b preserves H and thus the Nambu-Poisson structure.

In the case of D-branes in B-field background, there are several different ways to verify
the connection between B-field background and the noncommutativity. One way is to quan-
tize an open string ending on a D-brane and check that the endpoint coordinates obey a
commutation relation determined by the B-field background [I§]. Or one can compute open
string scattering amplitudes [[J. Another way [[q] is to find the Seiberg-Witten map which
maps the commutative field A to the noncommutative field A, and then check that the
(commutative) D-brane field theory with B-field background explicitly turned on is approx-
imately the same as the noncommutative field theory without explicit B-field background.

Quantization of open membranes in the large C-field background has been extensively
studied in the literature [R{, RI]. However, quantization is by its nature associated with
a Poisson structure, and thus the appearance of a Nambu-Poisson structure can not be
manifest. On the other hand, in 7], the scattering amplitudes of open membranes were
studied in a large C-field background, and the result indicated that indeed the C-field
background induces a Nambu-Poisson structure.

As a further support of our interpretation of the Nambu-Poisson structure as an effect
of the C-field background, in the previous section we found the Seiberg-Witten map which
matches the gauge transformation of ordinary Mb5-brane theory with the deformed gauge
transformation ([£.14)—({.17) supposedly corresponding to a C-field background.

10. Further remarks

Quantization of the coefficients of Chern-Simons term. In section P we showed
that if the internal space is N' = R? the model has no coupling constant at all. What
happens when N is a non-trivial space? In such a case there may not be any simple way to
remove the coupling constant by re-scaling of fields. It is an interesting problem to clarify
constraints imposed on this coupling constant. For the case when the 3-algebra is taken to
be A4, Bagger and Lambert @] have shown that the eigenvalues of the structure constant
fabed ~ eabed must be quantized as A = w/k for k = 1,2,3---. It implies that in BLG
model there are no tunable continuous parameters in the theory. In this paper, we have
used Lie 3-algebras which has an infinite number of generators. One may wonder if we
might have a similar constraint for the structure constant, especially if the internal space
N is a compact space. For N' = T3, for example, the generators are labeled by 7 € Z3 and
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the structure constant becomes []

[ 2 — .
V ny - (n2 X n3)5ﬁ1+ﬁg+ﬁ3+ﬁ4707 (101)

fﬁ1ﬁ2ﬁgﬁ4 —
where V is the volume of T and « is a constant. It is known that for any Lie 3-algebra with
finite number of generators and positive invariant metric can be reduced to the direct sum
of A4 [R3]. Here we have a consistent Lie 3-algebra with positive definite metric while the
number of generators is infinite. A natural question is whether our algebra such as ([L0.1))
can be understood as the direct (and infinite) sum of A4. If this is the case, we need to
have a similar quantization condition for the structure constant. It will be very interesting
if such quantization of parameter exists in the compact internal space N.

Global structure of internal space. The classification of possible internal manifold
N is another challenging issue. What is required in this paper is that

(i) NV is covered by patches with local coordinates y# and

(ii) on the intersection of different patches the local coordinates are related with each
other by the volume-preserving diffeomorphism.

T3 is an obvious example of manifold with such structure. In order to understand the
relation between M2 and M5, the mathematical classification N will be indispensable.

Multiple/long M5-brane. In our paper, we construct a single M5-brane action from
the BLG model. One of the most challenging issue is how to construct the action of multiple
Mb5-branes. For that purpose, we need to construct a set of generators T4y (y), where T4
(A=1,...,d) are the generators of an internal algebra and x%(y) is the basis of functions
on N. However, as far as we try, it seems difficult to find 3-algebras of this form which
satisfies the fundamental identity.

One idea to understand the nature of this problem is to consider the multiple cover of
N. Let us take the simplest example T and take all of its radius to 27 for simplicity. Then
the basis of functions is of the form exp(i Zz:i npy"‘) where n, is integer. Suppose one

takes the double cover in yi direction. Then it may be possible to take n; to be half integer.
So we have two sets of generators, one x” for ni € Z and the other X" for ni € Z+1/2. We
write the former generators as 7" and the latter as S”. It is then elementary to show that

{T.T,T}~T, {T.T,S}~S, {T.5,8}~T, {5.5.5}~5. (10.2)

So the 3-algebra of original T is contained in the algebra of covering space as a subalgebra.
It is not difficult to show that similar effect occurs in general. Namely let us denote the
3-algebra associated with 3-manifold A" as Ay and let A be a covering space of A". Then
Ax becomes a subalgebra of Ag. Since Ay is not the direct product of Ay with finite
Lie 3-algebra as above, A does not describe multiple M5 but it describes long M5 which
wraps N several times. Such a connection, however, may be helpful to understand the
multiple M5 in the future.
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Vortex string and volume-preserving diffeomorphism. As we commented, in our
construction of Mb-brane action, we do not need the metric on A/ but only its volume
form, or in other words, the 3-form flux C on it. Our computation further implied that it is
natural to assume that there is a very large 3-form flux C' on the M5 world-volume. This set-
up reminds us of the open membrane in large C' flux. Since we can neglect the Nambu-Goto
part (which contains the metric), the action becomes that of the topological membrane [R4],

S~ /C’“,,de“ ANdXY NdXP. (10.3)
When this membrane has the boundary on M5, this topological action gives
S~ /CM,,pX“dX” ANdXP. (10.4)

It gives an action for the string which describes the boundary of the open membrane.
When the target space has 3 dimensions and C' ~ €’} this action is identical to the
kinetic term of the vortex string [RJ], which was found long ago. In the supermembrane
context it was studied in [P0-PRZ. In particular it was found that it can be equipped
with the Poisson structure with the constraint associated with the diffeomorphism which
defines the volume-preserving diffeomorphism naturally [R1],

SXF = (X" w(f,9)tp =v"(X)+-, (10.5)

o = e’l’»‘&;faj\g, 8ﬂv"‘ =0, (10.6)

olf.9) = [ dof(xX)dg(x). (10.7

Here {, }p is the Dirac bracket associated with the kinetic term and --- in the first

line describe the extra variation along the world-sheet which can be absorbed by the
reparametrization of the world-sheet. In Bagger-Lambert theory, the gauge parameter has
an unusual feature that it has two index Ay,. In this picture, this structure is naturally
interpreted as a result of the fact that for the string we can introduce two functions f,g
to define the generators on the world-sheet. We hope that this connection with the vortex
string would give a new insight into the BLG model.
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A. Derivation of some equations

In this appendix we derive some equations used in the main text. We first derive the
commutation relation (f.3(). By using the explicit form of the covariant derivative
in ({.20), we obtain

[Dy, D))® = —gF},0:®, (A.1)

where the explicit form of F jy in terms of the potential is
F;Z/ = Ekw)a“aﬂb,,f/ — ge"‘”"’%bw-je’z‘x*@p@j\bw — (M — 1/), (AQ)

Because the (non-covariant) derivative appears on the right hand side, ij defined
by (A7) is not covariant. We can define the covariantized F' by

[Dy, D)@ = —gF};,D;®. (A.3)

These two fields are related by F, l’f,,@,:gfb = .7-"5 D ®, and by substituting ® = X* into this

v
relation and using

gDy X7 = V6], (A.4)

we obtain

VR, = gF), 05 X", (A.5)
F can be expressed as the covariant derivative of the field strength H.
Vj:ﬁu = gf;i\yp)\XR = Euu)\6)\pcrlz)p1)o)(}:€ = EMV)\Dpﬁp)\k- (AG)

In the first step we used the relation (A-4). Substituting this into (A.3), we obtain ({£.30).
Next, let us consider the equations of motion of the gauge fields b;; and b,;. For a
variation of b;;, we have the following variations of the action.

0Sx = /d3x<5bﬂDuDuXﬂ> = %/d3x<5bﬂ5ﬂpdDuHubd> (A7)
4 , .
o = & [ dldph 1,7, (X1, X7, X0)), (43)
58— @ Br(U. T, {6b" X U ——@ 3z (b {UT,,;, X7, A
int = 2 .Z'( ’ MJ{ > ) }>_ 2 .Z'( { FNJ7 ’ }>’ ( 9)

and the equation of motion is

L e g* - i9° i
0= —e"D,Hups + 7{XI,XJ, (X1, X7, XMy — 7(51;“{\11@],)(% T}

2
= 5@ DyMyups + DMy + 9" {X', X7, D X"}
g4 . ) . . . 1'92 —
+E{XZ7XJ7{X27XJ7XM}} - 7{WF[LJ7XJ7\P}7 (AlO)

or, equivalently,
D /HM? + Dy H = gJP°, (A.11)
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where the current is given in the text.
For the variation of the gauge field by;, we obtain

5Sx = —g / P (obyi (X", DAy}, (A12)
5Sy = —%/d%(@FA{ébM,y”,\Pb --¥ /d?)x(abw{ﬁr&\y,ym, (A.13)
5S0s = —% / @B (S LY. (A14)

The equation of motion for by, is
%&WF;; + g{XT, Dy X1 y"} + %]{WP’\, Uy} =0. (A.15)

This is not covariant, but we can covariantize this by multiplying g0, X v,

1% . Qg .
EGA“Vf[jI/ + gz{Xlap)\leX“} + T{WFAv \IJ7X#} =0. (A16)

By using (.23) and (A.g), we can rewrite this equation of motion as follows:
Dy HPM 4 DyHFM = g M (A.17)

The Bianchi identity (f.13) is obtained by substituting ® = X  to the commutation
relation ([l.29). By using the definition of the field strength H, we can rewrite the left
hand side as

[Dx, D3JXF = 8\ DaMis; — %EMC}DAHAW (A.18)
and the right hand side becomes
G{H, 5, X7, XY = EP5DiH, . (A.19)
Combining these, we obtain the Bianchi identity

D\H —D;iHrpe —DiHypi — DdH»\p =0. (A.20)

A\po
This is equivalent to (b.13)
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